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ABSTRACT 

A new digital adaptive control system is developed for the effective 

control of a priori unknown plants. Only the desired and actual plant 

output states are assumed to be measurable. A flyable digital computer of 

conventional capabilities is the central control agent. The primary con- 

trol criterion is the minimization of a weighted norm of the output state 
vector predicted one control interval into the future. Methods appropriate 
to linear stationary, linear nonstationary, and non-linear plant classes 

are derived and tested by simulation. 

Three alternate methods for the representation of unknown linear 

stationary plants are investigated. More than 1500 control efficacy simu- 
lations of a representative plant spectrum through order nine are analyzed. 

A primary conclusion is that plant representation based on linear inter- 

polation over measured prior responses is of widest applicability. Control 
of high order plants to lower than actual order is demonstrated, as is 

control in the presence of control force saturation. Systematic trends in 

the experimental data are correlated with analysis. 

Two alternate methods for interpolation representation of nonstation- 

ary linear plants are investigated. Periodic updating of a linear inter- 

polation representation is recommended on the basis of low order simulatory 

results. 

Non-linear plant representations by second order Volterra series and 

by interpolation over quadratic forms are developed and compared. Control 
of several non-linear plants treated as linear is experimentally demon- 

strated. 

An analytic basis for start-up based on the method of matrix pseudo- 

inversion is determined. Performance criteria and learning procedures are 

postulated. 
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SECTION 1 

INTRODUCTION AND SUMMARY 

The research here described is an analytical and experimental 

investigation of a particular adaptive control concept. The method is 
conveniently designated DACS (Digital Adaptive Control System). 

The approach is characterized by: 

The assumption that the particular plant under control is 
a priori unknown, except by its membership in one of several 
broad plant classifications 
That the control actions be derived from computation by an 
on-line digital control computer of conventional capabilities. 

Before elaborating the specifics of this research, identification of 

its context in adaptive control methods is pertinent. 

DEFINITION 

"An adaptive control system is here defined as a control system which 

is capable of monitoring its own performance with respect to a given index 
of performance and modifying its behavior by closed-loop action in such a 
manner as to optimize the index of performance or approach the optimum 

condition," (reference 1). 

APPLICABILITY - 

The impetus towards the evolution and use of adaptive systems comes 

from the existence of a class of control problems which are a priori un- 
describable by reason of: 

1 



Unpredictability - e.g. the unforeseen failure of a component in 
a space mission 

Excessive complexity of description - e.g. certain chemical pro- 
cesses 

Analytical intractability - e.g. many problems in fluid dynamics 

Extreme variance - e.g. the control of high speed aircraft. 

The inadequacy of conventional control systems to these problems is 

predictable to the extent that conventional design is customized to a 

postulated a priori description. 

1.1 DACS CONCEPT -~- 

The following principles are innate to the DACS concept: 

The system is to be adaptive in the following sense. It is to 
permit effective control of a variety of physical plants without 
a priori knowledge of the usual plant descriptors (pole zero 
configurations, describing functions, etc.). It is assumed that 
the only knowledge of the plant under control is what can be 
inferred from measurements made during the sequence of control 
actions. * 

The primary control agent is an on-line digital control computer 
of conventional capabilities. The research consists primarily 
in the determination of analytic methods resulting in reasonably 
simple algorithms for such computer centered control. 

Digital computer control implies a sample-and-hold process. The 
sampling period is one of two primary DACS parameters. It is 
designated the "decision interval" and symbolized by T. 

Using state space notation, the state vector components are 
restricted to the plant output variables and their real time 
derivatives. This choice reflects the ,data accessability of an 
unknown plant. 

The primary control criterion in the DACS concept is the mini- 
mization of a weighted norm of the output error state predicted 
one decision interval into the future. The second primary DACS 
parameter controls the relative weighting of error components in 
the norm. It is designated the "weighting coefficient" and 
symbolized by h. 

Jx While this research has been conducted with the stated objective of un- 
known plant control, many of the methods are applicable to the more usual 
practical case of partial and/or inexact plant descriptions. They do not 
preclude and indeed profit by the use of any available plant descriptions. 

2 



The following assumptions have been made in the present studies, but 

are not necessarily inherent in the concept: 

The single input - single output plant has been exclusively 
investigated. This is primarily a matter of analytic con- 
venience, and the nonlinear methods can be extended to multi- 
variate control. 
A multistate controller has been postulated. No necessity 
for the continuum ofcontrol forces has been established, and 
selection from a quantized set is not excluded. 

DACS FUNCTIONAL FLOW DIAGRAM -------- 

Figure l-1 is a flow diagram illustrating the DACS functional 
operations. Note that with the exception of control force application 
and possibly data conversion, all of the indicated functions are performed 
by an on-line digital control computer. 

1.2 RESULTS OF PREVIOUS INVESTIGATIONS --__----__-_ 

Prior to beginning the current research the DACS control concept had 

been investigated in some detail, particularly under sponsorship of 
National Aeronautics and Space Administration Contract No. NASW-599, 
February 1, 1963 - January 31, 1964 (references 2, 3, 4, 5, and 6). The 
following summary of major conclusions establishes the background for the 
current research: 

An equational basis was established for the digital computer 
control of an unknown plant. The analytic methods were partially 
empirical, and are substantially those described as "Taylor 
Prediction" and "Mixed Prediction" in paragraph 2.1. 

The control methods were tested by hybrid simulation on a 
representative set of linear stationary plants containing four 
or less poles only, and on a few higher order plants. Effective 
control was established for all plants tested including some 
unstable plants. The investigations were limited to solution 
of the regulator problem, although under a wide range of initial 
conditions. 

The correlation of Liapunov stability with conventional criteria 
of effective plant control was established. The practical im- 
portance of this result is that Liapunov stability is relatively 

3 
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easy to calculate. Thus, the number of actual control simula- 
tions can be minimized. 

Adaptivity was established in the sense that a limited common 
range of the DACS parameters (decision time T and weighting 
coefficient h ) permitted adequate control of most of the 
plants studied. A learning process for optimization of these 
parameters appeared possible. 

A new theoretical method based on Volterra series representation 
was developed and is described in references 5 and 7. The in- 
vestigation showed that the sample-and-hold property character- 
istic of digital control introduced sufficient regularity into 
the Volterra description as to permit its application to the 
unknown plant problem. This development indicated a basis for 
generalization to non-linear and/or nonstationary plants. 

Following the conclusion of Contract NASW-599, Emerson demonstrated 

control of linear stationary plants with significantly time varying 

reference inputs by hybrid simulation. In the same period, Dr. John 

Zaborszky and his colleagues at Washington University developed and tested 

a method for the representation of unknown plants by interpolation over 

values of a measured basis vector (references 8 and 9). Again this method 

is applicable to the control of non-linear and nonstationary plants as 

well as linear stationary plants. 

1.3 OBJECTIVES 

At the initiation of the NASl-5127 research, the following four tasks 

were made the primary objectives of the research effort. 

"Task I - Extend studies of linear plants to plants of order 
through nine and to linear nonautonomous plants... 

Task II - Investigate the application of learning procedures to 
the startup of the control system to improve initial control... 

. / 

Task III - Extend the study of nonlinear plants to autonomous and 
nonautonomous plants which are basically non-linear and/or 
non-linear due to state variable constraints... 

Task IV - Investigate methods for the improvement of the control 
system,,," 

Tasks I and III define the objects of study. Tasks II and IV indicate 

; . 
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technique investigations for the fulfillment or betterment of the other 

objectives. 

1.4 METHODS OF INVESTIGATION --- 

The methods of investigation were reflexive combinations of: 

Problem identification and definition 

Preliminary theoretical studies 

Reduction of theoretical methods to working forms 

Computer programming and control simulation 

Analysis of simulation results and correlation with 
theoretical method 

Validation or modification of theoretical method on 
basis of simulation results. 

In a study of this sort, one must be constantly mindful that the 

methods have ultimate practicality. We have tried to do this by: 

Including practical physical plants in the simulations 
Investigating only those methods with reasonably simple 
control algorithms 

Attempting control of plants of higher complexity using 
methods rigorously appropriate only to less complex plants. 

At the same time, one should not be overrestrictive of otherwise 

attractive methods on the basis of here-and-now means of implementation. 

This is particularly true of computational requirements, where current 

growth in computer capability suggests some optimism. 

SIMULATION METHODS_ 

All simulation results of this research were obtained by digital 

computation on an IBM 7094 computer. Hybrid simulation was originally 

proposed for the portion of the studies involving simulation of actual 

plant control. Late delivery of the intended equipment continued the 

commitment to pure digital techniques. 
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An anticipated economic advantage of hybrid computation for these 
studies may be illusory. In any event, digital simulations actually in 

excess of the forecast quantity were accomplished within the intended 

computer budget. 

1.5 SWIMARY OF THEORETICAL EXTENSIONS ----------------I~- 

The primary theoretical extensions made under this contract were: 

A method for including plants with pole-zero configurations 
in a state vector description was devised, compatible with 
the restriction of the state vector to the plant output com- 
ponents only. This is considered an original contribution 
to the theory. A summary of this method appears in paragraph 
2.1 with detailed development in Appendix A. 

The Volterra series representation of unknown non-linear plants 
of reference 7 has been further developed, and reduced to working 
equational form for the second order truncation case. A summary 
appears in Appendix G. 

The method of interpolative representation of non-linear plants 
of reference 8 has been reduced to working equation form in the 
quadratic case. This study is summarized in paragraph 4.1 with 
more extensive analysis in Appendix B. 
A linear form of the interpolative method was devised, and re- 
duced to practice in a form including pole-zero plant configura- 
tions. It is synopsized in paragraph 2.1. 

A method for start-up of non-linear plants based on the technique 
of matrix pseudoinversion was studied. It is described and il- 
lustrated in paragraph 5.1 with further analytic treatment in 
Appendix H. 
Two methods of "learning" in the form of DACS parameter * 
optimization were postulated and given preliminary investigation, 
as summarized in paragraph 5.2. 

Theoretical studies in diagnosis and rectification of several 
experimentally observed anomalies in the control system per- 
formance were made. They are summarized in Appendixes E and F. 

-- -----~ ------------ _______- _ 

" The optimized parameters are the DACS decision interval (T), and 
weighting coefficient (h). The more usual method of plant parameter 
adjustment should not be inferred. 

- 
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1,6 SUMMARY OF EXPERIMENTAL RESULTS -w------I__ 

The existence of over 150 graphs in this report, many synoptic of 

extensive data sets, indicates the extent of the experimental investiga- 

tions. The unusually large amount of experimentally derived data 

validates conclusions by generality of observation. 

LINEAR STATIONARY PLANTS ------ 

The greatest bulk of simulation data was obtained on approximately 

150 linear plants of orders two through nine. Appendix D identifies 

the most extensively studied plants, their data origins, and their 

importance to these investigations. 

Prediction Methods.-A primary objective of the experimental investigation 

was evaluation of the relative efficacy of three alternate methods for the 

representation of unknown linear stationary plants. Titled by their ana- 

lytic origins, the underlying principles of each method are respectively: 

Taylor Prediction - The predicted free response output state 
components are assumed to be individually representable by 
truncated Taylor series. The zero order free response component 
is represented by a Taylor series truncated at full system order. 
The corresponding series of higher order response components are 
successively truncated with linearly diminishing order. The 
forced response (sensitivity) vector develops as a selected subset 
of the free response Taylor coefficients. 

This representation is analytically exact for poles-only 
configuration plants with all poles concentrated at the origin. 
It is a usable approximation for other plants of pole configuration. 

Mixed Prediction - This method identically utilizes the Taylor 
series representation of the free response output state components 
as just described. However, the forced response (sensitivity) 
vector is estimated by averaging over the sequence of past control 
actions. 

Again the method is restricted to plants of poles-only 
configuration. It is an approximation for all such plants. 

Interpolation Prediction - This representation is based on the 
set of linear finite difference equations relating the terminal 
output state components of a linear stationary plant to its initial 
output state components and to applied step forcing functions. 



Initially the transitions of a sufficient set of consecutive 
control actions are recorded. Subsequent predicted responses are 
then obtained by linear interpolation among the measured set. 

The method is of general applicability to all linear stationary 
plants including pole-zero configurations. With exact measured 
data, it yields an arbitrarily precise approximation to the 
analytic state transition equation set. 

Stability Investigations. -The first experiments were over 260 determinations 

of Liapunov stability with respect to the DACS ( T-h ) parameters. The re- 

sults are summarized in Table 1.1. 

The first column identifies one reference method and the three fore- 
described practical methods of plant representation. Their salient 

properties are summarized in the second column. The third column identifies 

plant configuration. 

The interpretation of the fourth column is that all tested plants of 

the maximum stated order and all lower orders are stable under control 
with any of certain connected sets of ( T-h ) points. This result implies 
a possibility for control without knowledge of plant order. 

The data of the fifth column presupposes only that the plant order is 
known. It bounds a maximal order, such that all tested plants of that 
order exhibit control stability with any of certain connected sets of 

( T-h ) points. 

Paragraph 2.2 gives a discussion of the stability investigation and 

contains experimental data. 

Control Simulations.-With the range of stability established, the major ---- --- 
experimentation began in the simulation of the actual control process. 
The method of Mixed Prediction was discarded on the basis of the results 

summarized in Table 1.1. This left the following variants to be investi- 

gated: 

Plant order and pole-zero configurations 

Types of response prediction ( Taylor, Interpolation ) 
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TABLE 1.1 STABILITY RESULTS 

MAXIMUM ORDER SHARING COMMON ( T - h ) MAXIMUM ORDER WITH COMMON ( T - h) 
BOUNDARY WITH ALL LOWER ORDER PLANTS BOUNDARY OF ALL PLANTS c ORDER 

PREDICTIVE 
METHOD 

CHARACTERISTIC PROPERTIES PLANT 
CONFIGURATION 

COMMENTS 

Exact 

Mixed 

Taylor 

Reference only. 
Assumes full plant knowledge. 
Tests control policy. 

Unknown plant. 
Simple computation. 
Limited averaging over past 
plant forced response. 

Unknown plant. 
Simplest computation. 
Completely non-learning. 

Poles only 6 6 
Poles-zeroes 7 7 

Poles only 
Poles-zeroes 

Poles only 6 8 
Poles-zeroes -/k 9c 

Interpolation Unknown plant. 
Simple running computation. 
Independent startup pro- 
cedure required. 
Acquires plant knowledge in 
startup. 

I 

Poles only (6) 
Poles-zeroes (7) 

2 
2 

3 
3 

(6) 
(7) 

Includes representative 
self unstable plants. 

Stability of higher order 
plants poor or totally 
lacking. 

9~ denotes no known method 
of applicability. 
High order stability often 
marginal. 

() denotes inferred from 
'exact' values. 
Generally closely emulates 
'exact' plant description. 
Known startup procedures. 
Known learning procedures. 



CT - h ) values 
Reference input function 
Constrained variables or control forces 
Control with representation to lower than actual plant order. 

An obvious prolifigation occurs, and more than 1,500 control simulation 
runs were made and analyzed. 

Some of the most important results of one investigation are described 
in Table 1.2. The goal was to compare the methods of "Taylor Prediction" 
and "Interpolation Prediction" for simple reference input functions. Pre- 
diction was to actual order, and there were no constraints on the output 
variables or applied control force inputs. 

The following conclusions can be inferred from the experimental 

studies summarized in Table 1.2: 

The "Interpolation Prediction" method in its present form shows 
good applicability to all poles-only configurations tested. For 
the more general case of pole-zero configurations with a pole at 
the origin, it shows good performance except for a tracking offset. 
It fails to track in the absence of a pole at the origin. 

These experimental results are in accord with theoretical analysis 
(see Appendix E), and a possibility for improvement exists. 

The "Taylor Prediction" in its present form is of limited applic- 
ability, due to its restriction to poles-oniy plant configurations 
and to limited tracking capabilities. 

The foredescribed investigations have some primacy, particularly in 

that they exhibit innate behavior which conditions the following studies. 

Practical Variants ---~-_ .-The remaining experimental studies of linear stationary 

plants deal with a number of practical variants. Some summary conclusions 

were: 

Control to Lower than Actual System Order-The stability studies 
exhibited an expected diminution of the stability boundaries. 
However, small boundaries of at least marginal stability exist 
for fourth through eighth order systems alternately assumed to 
be one less than actual order, or third order. 
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TABLE 1.2 COMPARISON OF "INTERPOLATION" AND "TAYLOR" PREDICTION RESULTS 

VARIANTS METHOD OF PLANT REPRESENTATION 

PLANT CONFIGURATION POLE ORDER REFERENCE INTERPOLATION PREDICTION TAYLOR PREDICTION 
AT 0 INPUT 

Poles only Yes l-4 Regulator Very good convergence Similar to interpolation 
No 

Poles and zeroes 

Yes 5-7 Regulator Good convergence Generally overdamped 
No convergence 

Yes l-5 Step Very good convergence Similar but slower 

No l-5 Step Good convergence Converges to fixed offset 

Yes l-5 Ramp Very good following Follows with fixed offset 

No l-5 Ramp Good following Total divergence 

Yes l-5 Regulator Very good convergence 
No No known 

applicability 

Yes 6-7 Regulator Good convergence 
No 



TABLE 1.2 COMPARISON OF "INTERPOLATION" AND "TAYLOR" PREDICTION RESULTS 

VARIANTS METHOD OF PLANT REPRESENTATION 

PLANT CONFIGURATION POLE ORDER REFERENCE INTERPOLATION PREDICTION TAYLOR PREDICTION 
AT 0 INPUT 

Poles and zeroes Yes l-5 Step Very good convergence 

No l-5 Step Converges to fixed offset 
No known 
applicability 

Yes l-5 Ramp Follows with fixed offset 

No l-5 Ramp Total divergence 



Actual control simulations showed that for control to one less 
than actual order, the performance of low order systems ( < 4) 
shows marked deterioration in the form of slowly oscillatory 
convergence. In contrast, high order system response is 
relatively unaffected. High order systems controlled as third 
order run the gamut from slowly oscillatory convergence to 
actually improved performance. Perhaps the remarkable fact is 
that they do converge. 

Control Force Saturation-While not strictly in the realm of linear 
studies, control force saturation is a common practical departure 
from linearity. In a study of general plant configurations of 
order three through six, the effects of control force saturation 
was found to be sensitive to the weighting coefficient, h. Small 
h values combined with control force limiting produced oscillatory 
responses and in some cases limit cycles occurred. Conversely, 
large h values gave rise to an overdamped convergence. 

Updating the Interpolation Prediction-In principle, for linear 
stationary systems full plant knowledge has been acquired at 
the end of start-up. However, in keeping with the general DACS 
principle of operating with highly immediate data, a running up- 
dating was studied. Purely periodic updating was not found 
desirable. 

LINEAR NONSTATIONARY PLANTS -- 

Approximately 75 control simulations on selected second and third 

order pole configuration plants were made. In each case all plant co- 

efficients were constant except one, which was made significantly time 

variant. The Interpolation Prediction method was applied in two forms 

specifically appropriate to the linear nonstationary case. 

One form was the inclusion of the decision interval (T) in the basis 

of interpolation as representative of explicit time variability. Typically 

this method converged to an offset for regulator or step reference inputs. 

It was concluded that this method was not adequate for plants with fast 

time variation. 

The second basic device for incorporating time variation into the 

linear Interpolation Prediction method is periodic updating of the plant 

response determination. Experiments using this technique were generally 
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successful in achieving a fast and stable convergence to the desired output 

state. The requisite frequency of updating predictably increases with the 

rate of the time varied parameter. Some performance anomalies were ob- 

served, and correlated with 'ill conditioning' of the updated matrix of 

basis vectors. The effect is avoidable. 

Finally, a combination of the two previously described methods was 

found to produce somewhat improved performance over either method applied 

individually. 

NON-LINEAR PLANTS ---- 

The non-linear plant experimentation was limited to about 25 simula- 

tions conducted on parameter variants of two basic plants. The Van der Pol 
non-linear oscillator was chosen as a well investigated representative of 

continuous non-linearities. The other plant was a third order linear system 

with velocity saturation,which is a common example of non-linearity due to 
state variable constraint. 

These investigations were conducted with the interpolation method 
linear control policy,based on program availability. Thus, the preferred 
and more appropriate quadratic interpolative method has not been tested. 

It was found possible to convert the free response limit cycle of 

the Van der Pol system to single overshoot convergence by highly frequent 

updating of the linear interpolation representation. 

This result seemed to imply that precise describability in time could 

be exchanged for inadequate non-linear representability. Accordingly., the 
combination of frequent updating with inclusion of the decision interval 

(T) in the basis was tried. A less successful convergence was observed 

under this expedient. 

Similar but less dramatic control results were obtained for the 
velocity limited third order plant. 
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1.7 COMPARISON OF METHODS 

From its inception this research has characteristically given rise to 

a plethora of alternate methods of procedure. At this juncture, the fol- 

lowing preferred methods have been established: 

LINEAR STATIONARY PLANTS ------ 

Originally three alternate methods of plant representation were 

entertained: 

"Mixed Prediction" 

"Taylor Prediction" 

"Interpolation Prediction". 

The experimental stability studies ( see Table 1.1 ) eliminated the 

"Mixed Prediction" method on the basis of its restriction to low order 

plants. The experimental actual plant control studies ( see Table 1.2) 

backed by the theoretical analyses of Appendix E eliminated the "Taylor 

Prediction" method, both by its restriction to plants containing zeroes 

only and by observed (and apparently innate ) poor performance with time 

varying inputs. 

The "Interpolation Method" is preferred, not only by default of the 

other methods, but also because of its innate flexibility, partially un- 

exploited. 

LINEAR NONSTATIONARY PUNTS -----_------- 

Here the choice lies between the first order truncation of the 

Volterra series method of plant representation and a time variant form 

of Interpolation representation. The former has never been specifically 

exhibited in detail. Examination of its origins suggests that the 

Volterra method has deeper roots in non-linear plant representation than 

the time variability of linear plants. 

Accordingly we have chosen the Interpolation method as primary and 
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have successfully demonstrated its applicability by experimentation. 

NON-LINEAR PLANTS_ 

Again the choice is between Volterra series and Interpolation methods, 

this time in their non-linear forms. Here the applicable second order 

Volterra representation has been developed as summarized in Appendix G. 

The choice is less clean cut, but we have continued to favor the 

Interpolation representation for reasons stated in paragraph 4.2. 

1.8 ORGANIZATION OF REPORT ---~I------ 

The following sections of this report have been organized so as to 
make possible eclectic sampling on the basis of reader interest. Table 
1.3 is a guide to such reading. 

TABLE 1.3 READER'S GUIDE 

AREA OF PRIMARY INTEREST PERTINENT PARTS OF REPORT 

Linear Stationary Plants Section 2 and Appendixes A, B, C, D, E, 
and F 

Linear Nonstationary Plants Section 3 and Appendixes A, B, and F 

Non-linear Plants Section 4 and Appendixes B and G 

Control Theory Paragraphs 2.1, 3.1, and 4.1, Section 5, ant 
Appendixes A, B, C, E, F, G, and H 

Nonanalytic Survey Section 1, Paragraphs 2.3, 3.2, and 4.3, 
and Section 6 

Learning Procedures Section 5 and Appendix H 

Computing Requirements Paragraph 4.2 and Appendix I 
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SECTION 2 

CONTROL OF LINEAR STATIONARY PLANTS 

2.1 DERIVATION_QF PLANT AND SYSTEM EQUATIONS 

A study of the control of linear, stationary plants is a convenient 

starting point for investigating the general feasibility of the control 
method. Although the assumption of a linear stationary plant may appear 
to be rather specific and therefore restrictive in the sense that the 

plant is assumed to be unknown, it seems logical to structure the research 
effort so as to study the type of plant most amenable to analysis first. 
The more difficult problems associated with the inclusion of time-varying 
and non-linear plants in the class of admissible plants are then studied 

in a logical step by step manner. In this way, the various attributes 
and shortcomings of the control method may be singled out and modifications 
and refinements may be made as necessary as the study progresses from the 

simpler to the more difficult areas of investigation. 

METHOD OF ANALYSIS 

In order to establish a more concrete basis from which to work, the 
physical plant is assumed to be describable by a linear differential 
equation with constant coefficients of the general form indicated in 
equation 2-l: 

L(P) c(t) = M(P) m(t) (2-l) 

The plant is assumed to possess a single input, m(t), and a single output, 

c(t) 0 L(p) and M(p) are linear differential operators of orders n and m, 
respectively, where n and m are positive integers with the restriction that 
n is greater than m. 
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Although equation 2-l suffices to describe the type of plant to be 

considered, it is advantageous to rewrite the mathematical description of 

the plant in state-space notation: 

g(t) - H x(t) + c u(t) -- (2-2) 

y(t) = D x(t) -- (Z-3) 

where 2, LI, and y are n, p, and q vectors, respectively, and I& G, and 2 

are constant matrices. Equations 2-2 and 2-3 are termed the dynamical 

equations of the plant (reference 1). Equation 2-l and the equation pair 

2-2 and 2-3 become equivalent if u(t) and y(t) are identified as*: 

u'(t) = jm(t) m(t)...... S(t)] (z-4) 

y’ (t) = p(t) 6(t). . . . . . V(t), (2-5) 

in which case p=m+l and q=n. The quantity x(t) is identified as the state 

variable of the plant. 

Knowledge of the state variable z(t) at any instant of time, to, 

specifies the state of the plant at that time. Generally speaking, the 

state of a system (plant) is the minimal set of numbers (amount of informa- 

tion) given at t = to from which, with the knowledge of the input m(t) for 

t at,, the response of the system is uniquely determined. The state variable 
is not unique and any minimal set of numbers which span the state space 

of the system (plant) would suffice. Any choice of state variable, z(t), 

for the plant is relatable to any other choice, z(t), by a linear trans- 

formation of the form: 

z(t) = E x(t) -- 

* Vectors will be denoted by small Roman or Greek letters, matrices by 
Roman or Greek capitals, and transposed vectors and matrices are denoted 
by primes. 
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where E is a non-singular constant matrix (reference 1). The choice of the 
state variable is not arbitrary in this study, however, as the plant 
dynamical equations are assumed to be unknown. 

Since the input, u(t), and the output, y(t), are the only observable 

quantities, and are therefore the only measurable quantities from which to 

judge the plant dynamical performance, it is necessary to restrict the 
matrix 2 which relates the state variable and the plant output to be the 

identity matrix I. The dynamic equation pair 2-2 and 2-3 therefore reduces 

to the single equation: 

g(t) = H x(t) + G u(t) -- -- 

where: 

x'(t) I y'(t) = ic(t> t(t) n-l . . . . . . . c WJ 

and the specific forms of & and c are: 

(2-b) 

(2-T) 

(2-B) 

0 

. . . . 
Bm 

I 

(Z-9) 

The quantities Ai .th and Bi are the coefficients of the 1 derivatives of the 
left and right hand sides, respectively, of the plant differential equation 
2-l. g is a square matrix of order n and c is a rectangular matrix with n 
rows and m+l columns. In the context of the concepts of observability and 
controllability, the plant is completely observable because g is restricted 
to be the identity matrix. Also, the plant is completely controllable, 
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providing equation 2-l is an adequate description of the plant. The latter 

is true by assumption. 

THE STATE EQUATION 

The general solution of the plant dynamical equation 2-6 is given by: 

s(t) = ‘P(t,t,,Q = F(t,to) x(O) + F(t,T)G U(T) dT (2-10) 

where F(t,to) is the transition matrix of the free differential equation - 
and x(O) is the value of the state variable at t = to. Equation 2-10 is 

valid for any t 2 t . 
0 

Because the control action is effected by an on-line digital computer, 

the specific control functions (plant inputs) considered are those which 

are piecewise constant. This makes it desirable to obtain a solution of 

the plant dynamical equation in a discrete time form where the output is 

observed only at the instants t = kT (k = positive intergers, T>O), and the 
input m(t) is constant over the intervals kT 5 t < (k+l)T, where T is the 

length of the sampling period. The change from a continuous to a sampling 

solution presents no problems as a linear stationary system that is 

completely controllable and completely observable will retain these 

properties after the introduction of sampling subject to the restriction 

that the sampling frequency is not an integral multiple of a natural 

frequency of the plant. A mathematical expression due to Kalman (reference 1) 

of this restriction is: 

Re si = Re s 
j 

implies Im (s -s.) # $- 
i 3 

where i, j = 1, 2, . . ., n and q = positive integer. Equation 2-11 means 

that if two complex pole pairs have equal real parts, the sampling 

frequency must not be an integral multiple of the difference between the 

imaginary parts of the pole pairs. If this condition is violated, the 

phenomenon referred to as "hidden oscillations" may occur in which the 

sampling process "resonates" with the plant dynamics. 
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The State Equation in Terms of -t= kT+Initial Conditions.-One form of the 

discrete solution of the plant dynamical equation is given by (see Appendix A): 

x((k+l)T-) = Fx(kT+) + 2 uk (2-12) 

Equation 2-12 is the general discrete form of the state equation of the 

plant in terms of kT+ initial conditions. It is valid for plants described 

by differential equations whose corresponding transfer functions, W(s), 
contain zeroes as well as poles. 2 is the state transition matrix of the 

plant evaluated for a sampling interval T seconds in length. In the linear 
stationary case E is a constant matrix for constant T. The vector a is the 

forced response vector of the plant and it also is constant for constant T. 

Strictly speaking, x should be written F(T) and 2 as a(T), however, the 

argument, T, is dropped for the sake of notational brevity. 

The meaning of kT+ and kT- is illustrated in Figure 2-1, where kT + 

is the right hand limit as t approaches kT from the right and kT- is the 

corresponding left hand limit as t approaches kT from the left. The 
physical significance of the differences between kT+ and kT- is that at 
kT- the control force is uk 1 and at kT+ the control force is "k- If all 
elements of the state vector z(t) are continuous when a discontinuity 
occurs in the input, + no distinction need be made between kT- and kT ; 
however, such a condition is not true in general. This is discussed in 
detail in Appendix A. Simply stated , z(t) will be continuous if the transfer 
function of the plant contains no zeroes. When zeroes are present in the 
transfer function, certain elements of the state vector are not continuous. 

This fact severly limits the usefulness of equation 2-12 and another form 
of the state equation must be considered. 

The General State Equation in Te-rms of t = kT" Initial Conditions.-As is 
shown in Figure 2-1, the initial conditions at kT + are the value of the 
elements of the state variable, x(t), at the instant the control force u k 
is applied. In general, it is necessary to know the magnitude of the control 
force discontinuity (uk-ukml ) at t = kT to determine the state +(kT+). As 
will be shown later in this section when the control policy is discussed, 
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(k-l)T kT (k+l)T 

FIGURE 2-1 A SEQUENCE OF CONTROL FORCES ILLUSTRATING 
DIFFERENCE BETWEEN kT- AND kT+ 

the determination of the control force uk requires the knowledge of z(kT+) 

if a state equation of the form of equation 2-12 is used, and as a result 

an incompatible situation arises. For this reason, a state equation in 

terms of initial conditions at the fictitious time kT" is developed in 

Appendix A. The instant at which kT" is considered to exist is depicted 

in Figure 2-2. Although kT" does not exist physically, it may for the pur- 

pose of analysis be considered to be that instant in time just after the 

removal of control force u k 1 but just before the application of control 

force uk. A similar time (k+l)T' is defined for the next sampling time 

and an equation relating these two states is given by equation 2-13: 

x((k+l)TO) = F x(kT") + 1 uk -- (2-13) 

The vector 1 is a composite forced response vector which may be interpreted 

to take into account any discontinuities in the state vector elements due 

to input discontinuities at the beginning and the end of the sampling 

interval, as well as the effect of the control force during the interval. 

When the plant transfer function contains no zeroes there are no discon- 
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tinuities in the state vector elements in which case X = 2 (see Appendix A). - 
The similarity in form of equations 2-12 and 2-13 should be noted. Equation 
2-13 is the general form for the state equation used in this study and is 

valid for plants whose transfer functions contain zeros as well as poles. 

"k-l -- 

kT-- - kT+ 

L 7 

"k 

-- 

(k+l)T- - w (k+l)T+ 

"k-+1 

kT" (k+l)TO 

FIGURE 2-2 A SEQUENCE OF CONTRO& FORCES ILLUSTRATING 
THE DEFINITION OF kT 

A Specific State Equation.for the 'Poles Only' Case.-As was pointed out 

previously in this section, when the plant is describable by a differential 

equation whose corresponding transfer function, W(S), contains no zeros, 

the state vector, x(t), is continuous when a discontinuity occurs in the 

input to the plant. For this reason, when the plant transfer function 

contains poles only: 

x(kT-) = z(kT") = z(kT+) (2-14) 
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The state equation of the plant becomes simply: 

x((k+l)T) = F x(kT) + a uk -- 

where: 

(2-15) 

A Specific State Equation for the 'Pole-Zero' Case.-Because the state 

vector, z(t), is not continuous when a discontinuity occurs in the input 

to the plant, the distinction between the time instants just before and 

just after the control force switching must be retained. A state equation 

which will be useful when the control law is developed, is derived in 

Appendix A in terms of physically existent z(t) states and is given by 

equation 2-17: 

x( (k+l)T-1 = E x&T > + -I Uk + k2 Uk-l (2-17) 

The two forced response vectors l+ and b2 may be interpreted as follows: 

is the sensitivity of the plant response to the current 
including the effects of the discontinuities 

caused by apply&g and removing u at the beginning and the end of 
the interval kT 5 t < (k+l)T. k 

Vector, b2, is the sensitivity of the plant to the removal of the 
control force, u at the beginning of the interval (t = kT). If 
the plant conta&'Ao zeroes then b -l n a and b2 = 0 (see Appendix A). 

The state x((k+l)T-) is expressed in terms of the state z(kT-) in 

equation 2-17 rather that the state x(kT+) as in equation 2-12. The 
incompatibility discussed previously in this section in connection with 

equation 2-12 does not exist when 2-17 is used as the state equation. 

THE CONTROL POLICY 

The general objective of any control policy could be stated to be to 

align the actual output or output state of a system with some desired output 

26 



or output state. Whether this desired output is the actual input to the 

system or is some function of the input is considered immaterial to this 
discussion. It will be assumed that the function describing the desired 

output is analytic on some open interval (t,, tb> * except for at most a 
finite number of discontinuities and that it is accessible for measure- 
ment or is known in advance. 

I Figure 2-3 shows a representative time history segment of the type of 
, control system under study where c(t) is the output of the plant which is 

being controlled, r(t) is the desired output, and the control force 
sequence is typical of that set of forces which would be applied to align 

c(t) with r(t). 

The desired output state will be represented as: 

r'(t) = 1 r(t) i-(t) . . ..?2(t) ] (2-18) 

I I I I ’ I I ; 
I 

A iT 
I I I I I 

4T 6T 81 

FIGURE 2-3 REPRESENTATIVE TIME HISTORY OF CONTROL SYSTEM 

* The open interval (t ,t ) will be considered to contain that interval of 
time during which cont?olbof the plant is desired. 
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where the desired output state vector and the actual output state vector 

elements possess the same derivative relationship with respect to one 

another. 

An error state vector may then be defined: 

g(t) = r(t) - z(t) (2-19) 

The General Control Policy Equation.-The control policy or control law 

could be identified by a variety of performance criteria, however, due to 

the assumption of an unknown plant, the following relatively simple 

criterion will be used (reference 2). 

Mfq bk] = y [&(&+1)T) & +Uk+l)T)] (2-20) 

where & is a positive definite, symmetric constant matrix. The specific 

control aim is to select a control force u k such that the positive definite 

quadratic form Q, is minimized. Essentially, this amounts to reducing to a 

minimum the distance measured in the n-dimensional manifold between the 

actual and desired states at t = (k+l)T. This will be the Euclidean distance 

if & is the unity matrix. 

Substituting the general state equation 2-13 into the expression for 

Qky according to the definition equation 2-19, yields an expression for 

Qk in terms of u k : 

Q, = L'((k+l)T') - &(kT")F'-A'uk & 1 [ r((k+l)TO) - F x&T")-i uk -- 1 
(2-21) 

The assumption is made that r(t) is continuous at t = kT" and the kT" 

notation has been included in r(t) for the sake of uniformity only. Dif- 

ferentiating Q, with respect to uk yields: 

dQk - = -2 h' & 
d"k 

r((k+l)T' - x x(kT") 1 + 2 X'K A u k (2-22) --- 
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- 

/ .,, 3 
Setting equation 2-22 equal to zero will yield the value of uk which will 

minimize the quadratic form Q,: 

A'X r((k+l)T")- F x(kT") C -- 
Uk = 

1 (2-23) 
h' K h -- 

The fact that equation 2-23 yields a solution for uk which will 

minimize the quadratic form Q, is deomonstrated by the fact that the second 

derivative of Q, with respect to u k yields a quadratic form which is positive 

definite: 

2 
9 =2X'KX>O -- 
d"k 

(2-24) 

Equation 2-23 is the general form of the control policy equation. 

The Control Policy Equation Assuming Poles Only.-As was discussed previously, 

kT" is a fictitious time instant which in general precludes actual measure- 

ment of the state vector at that time. It has been shown, however, that when 

the plant transfer function contains poles only, there need be no distinction 

made between kT- and kT" and that X = a. A form of the control policy 

equation applicable to situations where the differential equation describing 

the plant possesses no derivatives of the input, m(t), may, therefore, be 
written as: 

a' X F x&T)] -- 

Uk = a'K a (2-25) 
--- 

The Control Policy Equation Assuming A Pole-Zero Configuration.-The time 
instants kT-, kT", and kT+ must be distinguished when the plant transfer 

function contains zeroes. In order to place the general control policy 

equation 2-23 in a form which includes only measurable state vector states, 

use is made of a relationship derived in Appendix A. 

&No > = x(kT-) + E-lb2 uk 1 (2-26) 
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Substituting equation 2-26 into equation 2-23 yields as a practical control 

policy equation for the case where the plant transfer function contains 

both poles and zeroes: 

Uk = 
((k+l)T) - F x(kT-) - b2 uk -- 

A' K A - -- 
(2-27) 

The Weighting Matrix .-The constant matrix & introduced in the quadratic form 
Q, performs the function of a weighting function on the various state variable 

components. The particular form used in this study is that of a diagonal 

matrix as is shown in equation 2-28: 

The matrix & is obviously symmetric and is positive definite because the 

discriminant and all the principle minors are greater than zero. 

The matrix has as its basis previous Emerson studies (reference 3) and 

is largely the result of empirical observations. It does provide a large 

region of stable operation, particularly for plants of fifth and lower order 

which seems to justify its use. 

The inclusion of T, the sampling interval in seconds, in the weighting 

matrix has the effect of normalizing the time scale to unit decision interval 

length because of the derivative relationship between the elements of the 

state vector. The effect of h is to emphasize or de-emphasize the higher 

state variable components depending upon whether h is greater than or less 

than one. It would be expected that for a given value of T, large values 

of h (one or greater) would tend to make the system convergence somewhat 

sluggish as more of the state variable components are being controlled. 
In contrast, for small values of h (less than one) where the higher order 

state variable components are progressively de-emphasized, it would intui- 
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tively appear that the control action would be somewhat faster as fewer of 

the state variable components are closely controlled. It remains for the 
experimentation to show the exact effects of the variation of T and h and 
their product. 

Some Remarks.-All of the equational development so far has been formulated 

in terms of exact quantities. Specifically, the general state transition 
equation 2-13 with its two particular cases equations 2-15 and 2-17, and the 

general control policy equation 2-23 with its two particular cases, equations 
2-25 and 2-27, are written in terms of the exact transition matrix, F, and 
the exact force sensitivity vectors X, a, kl and b2. By assumption, however, 
the plant is unknown which would preclude exact knowledie of any of these 
quantaties. Obviously, some technique or set of techniques must be used to 
obtain estimates of these quantaties. A search for and study of various 
estimating techniques constitutes one of the major goals of this research. 
The exact equations do provide a basis for comparison and an intuitive deduction 

would be that exact knowledge of the plant would yield the 'best' control in any 
given situation. 

ESTIMATION AND PREDICTION 

The response of.the plant may be broken into two parts. The first 

part may be termed the free response, or that response which would occur in 

the absence of any control input. The second part may be termed the forced 

response, or that part of the response which is due to the control input. In 

the case of a linear system, the two parts may be considered separately as 

the principle of superposition applies. As will be seen later when non-linear 

systems are considered, such a division is possible in the non-linear situation 

also. However, superposition of course does not apply, and the two parts are 

not independent of one another. 

To be more specific, the general state equation 2-13 may be written in 

the form: 

x((k+l)TO) = zk((k+l)To) + huk 
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The vector zk((k+l)TO) represents the free response of the plant over the 

interval kT"< t,<(k+l)TO and in the absence of the control force, u k' 
zk((k+l)To) would be the plant response at t = (k+l)T“. The forced response 

term, X Uk9 may then be considered to be a "correction" which when added to the 

free response, aligns the total response at (k+l)T' so as to be in closer 

agreement with the desired state r((kfl)T"). 

Figure 2-4 depicts a representative situation for one of the state 

variable components of each of the three vectors, x(t), x -k (t), and r(t) during 
one sampling (decision) interval. The amount of "correction" during the 

sampling interval kT"< t<(k+l)TO obviously depends upon the magnitude of the 

control force u k' The purpose of the control policy is to determine uk in 

such a way as to effect closer alignment between the state variable components 

xi((k+l)To) and ri((k+l)To) through the artifice of minimizing the quadratic 

form 9,. 

kT 
DECISION INTERVAL- 

(k+l) T 

ERROR 

RESPONSE 
C ORRECTI ON 

FIGURE 2-4 CORRECTIVE ACTION OF CONTROL FORCE DURING A 
DECISION INTERVAL 
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p 
,/ a Two things must be known in order to calculate the control force uk: 

The free response zk((k+l)To) 
The current sensitivity of the plant to a control force, i. 

The value of these quantities may be ephemeral in nature if the plant is 

time-varying, or constant if the plant is stationary. Considering the time 
sequence of events, zk((k+l)To) is not a measurable state at the time u 

must be calculated. Thus, estimates must be obtained for both x+((k+l)T') and 
x -* In the case of li,((k+l)T'), this amounts to a prediction problem as the 
value of zk((k+l)To) must be "predicted" on the basis of state variable 
measurements made earlier in the time history of the control process. 
In the context of this study, prediction of zk((k+l)To) amounts to estimation 

of the transition matrix E and measurement of the state x(kT'). In this 
light, the state and control policy equations may be written in the form: 

ze((k+l)To) = E&(kT') + < uk 

Uk = 
((k+l)T') - Ee x(kT') 1 
A' R A -e--e 

(2-31) 

where the subscript e deonotes an estimated value. 

Exact Prediction-Reference Standard. -In the event the plant is known, the 
estimates of F and X reduce to exact values and prediction is exact. This - - 
situation is termed "Exact Prediction" and serves the purpose of a reference 
or standard against which estimation techniques may be compared. 

raylor Predicition.-One type of prediction studied is termed "Taylor Prediction" 
because a truncated Taylor- series is used to estimate the transition matrix F. - 
I'he form of the Taylor estimate I& is given in equation 2-32: 

. 
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The order of the plant is assumed to be p which may be less than or equal to 

n, the actual order of the plant. The length of the sampling or decision 

interval is assumed to be T seconds. ET will be identical to x for the case 

where the plant transfer function consists of a p th order pole at the origin. 

ET would then appear to be a fair approximation of those dynamic modes close 

to the origin of the complex plane which are the relatively more important 

modes to control. Study of Taylor Prediction dates back to earlier Emerson 

studies (reference 3) when transfer functions containing poles only were 

considered. The corresponding sensitivity vector analogously estimated is 

a. - The Taylor estimate of a is given by: 

(2-33) 

The justification of the form of sT follows from the integral relationship 

between the last column of E and a. 

Specifically, if the last column of F(t) is given by r(t), then: 

(2-34) 

where the gain of the transfer function is assumed to be unity. One of the 

great virtues of using ET and sT as estimates of E and 2, respectively, is 

that a minimal amount of knowledge is assumed about the plant. Also, becaus: 

of the simplicity of the forms of ET and sT, implementation is extremely 

simple. The "working equations" employing Taylor prediction are summarized 

in Table 2.1. 

Mixed Prediction.-A second type of predicition studied is termed Mixed 

Prediction. The term "mixed" comes about from the fact that F -T as defined 

by equation 2-32 is used as an estimate of F, however, 5 is estimated by a 

suitable averaging process, an example of which is given in equation 2-35: 
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TABLE 2.1 SUMMARY OF WORKING EQUATIONS 

TYPE OF 
PREDICTION 

STATE EQUATION 

Exact 

Taylor 

Mixed 

Interpolation 

TYPE OF 
PREDICTION 

$(k+l)T-) = g z$kT-) + bl uk + k2 uk 1 

x((k+l)T-) = ET x(kT-) + gT uk 

x((k+l)T-) = ET E(kT-) + gA uk 

x( (k+l)T-1 = FI z(kT-) + bl u + k2 u 
I k I k-l 

CONTROL EQUATION 

Exact 
.A' K KC (k+l)T) -- 

1 
- F x(kT-) - b2 uk-1 

Uk = -__ 1 A’ KA 
Taylor a+ I( 

Uk = 7 C I( (k+l)T.) - ET x&T-) 1 g+ !i ST 
Mixed 

si & [ r((k+l)T) - q x(kT-) 1 “k = S’A - -A Ka 

Interpolation 
1; 5 

c 
r((k+l)T) - FI X&T--) - b2 

Uk = 
I Uk-l 1 YI K XI 

TYPE OF 
PREDICTION 

STABILITY EQUATION 

Exact 

Taylor 

X A' K -- - 
D=F- - E 

A' K X - -- 

D=F- d'T !i 

a'T - -T Ka % 

Mixed 

Interpolation 

D,F-h'!i - 
a' K a FT -- 

(Exact Equation Used) 

(NOTE: For Stability Study 

=A = a is assumed) 
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k 

1xCi-T) - ETz((i-l)T)( 
ZA = k-1 (2-35) 

where j is the number of past decision intervals used in estimating a. If 

the plant is stationary, a will be a constant vector and in the time varying 

case 2 will remain relatively constant over a series of consecutive intervals 

if the plant is slowly time varying. Under these circumstances, the averaging 

process should yield a fairly accurate estimate of a. The "working equations" 

employing Mixed Prediction are summarized in Table 2.1. 

Interpolation Prediction.-A third type of prediction studied is termed 

Interpolation Prediction (references 4 and 5). For a general discussion of 

the interpolation procedure and derivation of the basic interpolation equa- 

tions, refer to Appendix B, as only that part applicable to the linear case 

is considered here. The interpolation method is the most generally applicable 

of the prediction methods studied. The first two methods discussed are tacitly 

restricted to the "poles-only" case. However interpolation may be employed 

to obtain estimates of 2 or bl and tag, without a priori knowledge of whether 

the transfer function representing the plant contains zeroes or not. 

Specifically, in the linear stationary case the vector of base functionals 

is chosen to be: 

where, in the notation of this section, @ -k is given by: 

24; = 
I 

5’ &To) Uk Uk-l 
I 

(2-36) 

(2-37) 

The matrix of vector base functions , 2, then consists of an appropriate set 
of the linear k's which need not be consecutive. 

Defining a partioned matrix B derived from the base functionals: 
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E FI 'b 1 -11 i b2 
I I I I (2-38) 

where F is a p th 
-1 order square matrix and kl and b2 are p vectors. This 

particular form yields as an estimate of z((k:l)T-): 
I 

z((k+l)T-) = F x(kT-) + Ir, -- 1 I 
uk + h2 u I k-l (2-39) 

Equation 2-39 is identical in form to the state equation 2-17 which is 

repeated here for comparison purposes: 

z((k+l)T-) = F x(kT-) + kl uk + b2 uk 1 (2-17) -- 

If measurement of the entire state vector is possible, then it would be 

expected that FI-F, bl ehl, and t12 wk2. It is important to point 
out that the isterpolatiok procedure doe5 not require measurement of the full 

state vector and therefore is not inherently a plant identification procedure. 
Whether the plant is sensitive to derivatives of the input will be reflected 

in the relative values of the sensitivity vectors h and b2 . It would be 
I 

expected that, if full state variable measurement is‘possibli, the case of 

the plant whose transfer function contains no zeroes would result in bl 
I 

~2 

and 12, ~2. In this case, equation 2-39 would very closely approximate 

the state equation 2-15 which is repeated here also for comparison purposes: 

z((k+l)T) = F x(kT) + 2 uk -- (2-15) 

A summary of the "working equations" employing Interpolation Prediction is 
given in Table 2.1. 

STABILITY OF THE CONTROL POLICY 

The basic purpose of the stability study is to place some bounds on the 
number of control simulation runs that need be made and, also, to provide a 
guide as to what particular runs will yield the most significant data. For a 
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given situation, the plant must be assumed known in order to evaluate conditions 

under which stable operation may be achieved using various types of prediction 

' and estimating techniques. 

The particular method of control proposed in this study involves a selection 

of the sampling interval length, T, and the weighting factor, h, which together 

form the weighting matrix 5. The proper control of an unknown plant using this 

concept requires that these parameters be selected in a satisfactory manner. A 

stability study can be made using various T-h value combinations for individual 

plants, and a region can be established,for each plant where stable operation of 

the control policy is achievable. It should be possible to select T and h so 

that performance will be relatively invariant for a wide variety of plants. 

The particular Liapunov function utilized is formulated in Appendix C where 

a positive definite quadratic form is proposed. The function expressing the 

change in the error norm derived in general in Appendix C becomes in the linear 

stationary case considered in this section: 

Substituting the state equation 2-13 into equation 2-40 yields: . 

En = + u&l 1 [ E F x(kT') + X u __ _ k] - f' &To)] E [I(kT';l 

(2-41) 

Substituting the control policy equation 2-315 which is expressed in,terms of 

estimates of g and A, into equation 2-41, assuming the desired state to be 0, 

and collecting terms yields: 

Making the definition: 

XX'KF 
2 =F- --e--e 

$K& 
(2-43) 
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n may be expressed in form: 

En = - x'(kT")[~ - g'I&] x(kT") 

Equation 2-44 is of the form: 

En = - x'(kT") Mx(kT') 

(2-44) 

(2-45) 

where if g is positive definite, global asymptotic stability is assured. 

Assuming z is chosen to be positive definite, then g will be positive definite 

if the eigenvalues of the matrix 2 all have absolute values less than unity. 

The stability study then resolves down to a determination of the eigenvalues 

of: 

Xh'KF - -e - -e 
g=F- A'KX 

-e - -e 
(2-46) 

A summary of the specific equation for different types of prediction is 
given in Table 2.1. 

2.2 EXPERIMENTAL STUDIES 

This section presents the experimental response characteristics of a 

representative set of linear stationary plants controlled by the DACS Control 
Policy. Various aspects of DACS control using the three alternate types of 

prediction introduced in paragraph 2.1 are presented graphically to show 
certain limitations as well as advantages of each type of prediction. 

The objectives of this experimental program were: 

To determine the control performance of our control system on a 
representative set of plants of order through nine for several 
types of prediction put forth in this and previous DACS studies. 

To determine the control performance of our control system on a 
representative set of plants controlled with less observed state 
variables than the true plant order for several types of prediction 
put forth in this and previous DACS studies. 
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To verify experimentally DACS control on a broad spectrum of plants 
of pole-zero configuration. 

To investigate the effect of the weighting factor (h) on our control 
system response. 

To investigate the effect of control force saturation on our control 
system response. 

To investigate the effectiveness of updating with the Interpolation 
Prediction method on a selected number of plants of order through 
five. 

These objectives are considered along with the appropriate experimental pro- 

cedures in the following paragraphs. 

LINEAR STATIONARY PLANTS 

In order to accomplish these objectives, it was necessary to assemble a 

representative set of linear stationary plants of order through nine. Such 

a set of plants was assembled by utilizing all previous DACS research to 

select a number of low order plants as an experimental starting point, and 

by selecting several references (references 3, 6, and 7) to extend the set 

of plants to higher order. The resultant set consisted of approximately a 

hundred and fifty transfer functions of pole and pole-zero configuration. 

This large set was used for the stability investigation phase, but was con- 

sidered to be too large for control simulation studies. Therefore, two smaller 

subsets, one of pole and the other of pole-zero configuratons, were selected 

for all further simulation studies. The plants composing these two subsets 

along with a brief discussion are listed in Appendix D. 

It should be noted that the plant transfer functions consist of three basic 

types: 

Plants which contain an integration 

Plants which are oscillatory 

Plants which do not contain an integration 

The typical free (uncontrolled) response of each type of transfer function is 

illustrated in Figure 2-5. Also several unstable plants of order through five 

were included in the control simulation studies. 
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(a) PLANT WITH AN INTEGRATION 

(b) OSCILLATORY PLANT 

FIGURE 2-5 FREE RESPONSES OF THREE TYPES OF PLANTS 
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t (c) PLANT WITHOUT AN INTEGRATION 

FIGURE 2-5 FREE RESPONSES OF THREE TYPES OF PLANTS (Cont'd.) 

STABILITY BOUNDARY RESULTS 

As has been noted, the decision interval (T) and the weighting factor 

(h) are the two design parameters of our control system. Previous DACS 

research has shown the close correspondence between analytical T-h Stability 

boundaries established by Liapunov's second method, and those obtained by 

experimental studies. Since this relationship was previously established, 

the analytical T-h stability boundaries provided a very convenient method of 

determining the stability boundaries for the system controlling each plant 

of the representative set. Also, of importance is the fact that the stability 

boundaries could be established by this method for any desired type of 

prediction; i.e. Exact, Mixed, Taylor, and Interpolation Prediction. 

Exact Prediction - Pole Configurations.-Exact Prediction T-h stability 

boundaries were obtained for about sixty plants of second through ninth 

order. The system stability boundaries for control of all the second order 

plants consisted of the entire T-h plane examined. Figure 2-6 shows the 

comparison between the common third order system stability boundary and the 
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common fourth order system stability boundary. The common stability boundary 

of a particular order system is that set of points in the T-h plane common to 

all plants of the representative set for that order. The stable region is 

indicated in Figure 2-6 where the common boundary for third order systems is 

open to the right for large T-h values. This should be interpreted to mean 

that if a boundary to the right exists, it is at larger T-h values than those 

shown on the graph. The fourth order boundary is closed on all sides except 

.the top where, if the graph were extended to include larger values of T, the 

boundary would probably close at the top. The stable region in the stability 

graphs that follow may be interpreted in a similar manner where, in general, the 
stable region lies to the right of the boundary as it is traversed in a clock- 

wise direction. 

I .z 
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FIGURE 2-6 COMMON EXACT STABILITY BOUNDARIES 
OF 3rd AND 4th ORDER SYSTEMS 
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The obvious effect of higher plant order is the common stable operation 

region of the system becomes smaller. This fact is also illustrated by 

Figures 2-7 and 2-8, which present the common fifth and sixth order system 

stability boundaries. The sixth order system region of common stability is 

quite small, and that of even higher order systems consists of only stable 

neighborhoods of isolated T-h points. A fact of equal importance is that for 

all plants of each order through six there exists a common stable region, and 

that for all the plants of order through six there exists a small common 

region of stable performance. This is particularly significant since many 

of the plants are poorly damped to the point of being on the difficult side, 

even for more conventional linear compensation techniques with full knowledge 

of the plant transfer function. 

Exact Prediction - Pole-Zero Configurations.-Exact Prediction T-h stability 

boundaries were obtained for about forty plants of second through ninth 

order. As in the previous poles only case, all the second order system 

stability boundaries consisted of the entire T-h plane examined. Figures 2-9, 

2-10, 2-11, and 2-12 present the common stable boundaries for third, fourth, 

fifth, sixth, and seventh order systems. Figure 2-9 shows the effect of 

higher plant order is to decrease the common region of stable performance 

as was the case with pole configuration transfer functions. This same point 

is illustrated by the other figures for plants through seventh order. The 

seventh order system common boundary is still a sizable region, but for 

higher order systems the region decreased to a few isolated T-h points. The 

important facts again are that all plants of each order thorugh seven have 

a common stability boundary, and that all the plants of order through seven 

have a small common region of stable performance. 

Also, in general the plants with zeros have a larger system stability 

boundary. This is easily seen by comparing the common boundaries for any 

like order, and is brought out by the existence of a larger common boundary 

for pole-zero configuration plants of all orders. This result is very easily 

demonstrated by Figures 2-13, 2-14, and 2-15 for a third, fourth, and fifth 

order system respectively. Figure 2-13 presents the stability boundary for 
a third order pole configuration plant, and that for a pole-zero configuration 
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'plant having the same set of poles. It may be observed from this figure 
that the pole-zero configuration plant has the larger stability boundary. 
This same fact is evident for the higher order systems presented in the 

other figures. 

Mixed Prediction.-Mixed Prediction was introduced and partially investigated 

on pole configuration plants of low order in previous DACS research (reference 3). 

These early studies indicated that this type of prediction worked Tjith some 

success on the limited number of plants examined. However, due to the limited 
number of plants considered, no general conclusions could be made for this 
type of prediction. 
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The present experimental study was conducted on a subset of fifty 

pole and pole-zero configuration plants of order thorugh eight. Figure 2-16 

and 2-17 present the Exact and Mixed Prediction system stability boundaries 

for a second order pole and pole-zero configuration plant respectively. It 

may be observed in both figures that the Mixed Prediction resulted in smaller 

stability boundaries than those for Exact Prediction. This same result is 

illustrated by Figures 2-18 and 2-19 for third order systems and by Figures 

2-20 and 2-21 for fourth order systems. These results are typical for all 

systems studied through fourth order. However, the systems of order greater 

than four in general proved to have very poor stability boundaries. The 

only common stability boundary existed for the second order systems. 

In summary, the Mixed Prediction study resulted in adequate stability 

boundaries for all second and third order systems, and fair to poor stability 

boundaries for fourth order systems. The higher order systems resulted in 

very poor stability regions, and in many cases, no stable region existed. 
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Taylor Prediction .-Taylor Prediction was also introduced in previous DACS 
research. Several experimental studies of some depth were conducted on  
plants through fifth order using this type of prediction. These early 

experimental studies indicated that Taylor Prediction possessed stable 
boundaries of adequate size, and  that the control system response compared 
quite well to that obtained from Exact Prediction. However, no  general  
conclusions could be  made  from this early work due  to the lim ited number  
of plants used, and  the regulator response being the only desired output 
state examined in any depth. 

The  present experimental study was conducted on  about sixty plants of 
second through ninth order. These plants were all of pole configuration 

since no  counterpart of Taylor Prediction has been developed for plants of 
pole-zero configuration. The  system stability boundaries for control of 
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all second order plants consisted of the entire T-h plane examined. Figure 

2-22 through 2-26 present the common stability boundaries for all third 

through eighth order systems. Two stability boundaries are represented on 

each figure to allow easy comparison as plant order increases from third to 

fourth, fourth to fifth, . . . seventh to eighth. For example, Figure 2-22 

shows the common stability boundary of the third order plants and that of the 

fourth order plants. As in the other types of prediction studied, the lower 

order system stability boundary is better than or equal to that of the higher 

order system. This same result is evident in the Figures 2-23 through 2-26. 

Rather sizable common stability regions existed for all plants of each order 

through eight. Also, a common region of stability exists for all the plants 

of order through six. These results are of considerable significance when 

it realized that only the plant order was utilized in the Taylor Prediction 

method. 
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The comparison between Exact and Taylor stability boundaries is subject 

to qualification. The Taylor stability boundaries for fifth and higher order 

systems consists largely of marginally stable T-h points. Marginally stable ; 

points are those which have at least one eigenvalue between 0.9 and 1.0. The : 
past DACS research has shown that the system response is sluggish at such T-h 

points, and sometimes unacceptable due to the slow system performance. However, 
such regions are of importance as an ideal starting place to commence experi- 

mentation for establishing desirable T and h values in a learning process. 

TAYLOR PREDICTION CORT.ROL TO ACTUAL SYSTEM ORDER 

Exact Prediction control studies were conducted to provide a basis for 
evaluating the Taylor Prediction control performance. Studies were conducted 
to determine the control performance of our system for various.desired output 
states. Approximately three hundred control simulations were conducted on 
sixty plants of second through ninth order. 

The method of start-up consisted of one arbitrarily selected control 

force being applied to the plant. The only purpose of this control force 
was to start the simulation. The value of this control force was usually 
very small, and was of no significance when compared to the initial state of 
the plant. The following results summarize the numerous control simulations 

conducted to determine the effect of using Taylor Prediction. 

Regulator Results.-An initial value of -20 units was used for each of the 
state vector components giving each component an initial error of +20 units. 

Figures 2-27, 2-28, and 2-29 illustrate typical Exact and Taylor Prediction 
control responses for stable T-h points for third order systems. The 
control force sequence has been included in Figures 2-27 and 2-29 to illus- 

trate the type of control action effected by the control policy using Exact 
and Taylor Prediction. On low order systems both Exact and Taylor predic- 
tion resulted in approximately the same control performance. However, in 
some cases, Taylor Prediction control was somewhat more sluggish, as is 
seen by Figure 2-29. 
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Figures 2-28 and 2-29 also show the Exact and Taylor control performance 

for low order unstable plants. These results are typical of those obtained 

for the unstable plants of fourth and lower order. 

Typical control performance results for Exact and Taylor Prediction at 

stable T-h points for fourth and higher order systems is presented by Figures 

2-30 through 2-37. It is easily observed that in many instances Taylor 

Prediction produces a less oscillatory response, and that in the majority of 

cases it is as good or better than Exact Prediction performance. 
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Trajectory Results .-Exact and Taylor Prediction control performance was 

examined for step and ramp desired output states. This was done to determine 

the capability of the controlled system to follow a desired state other than 
zero. In all of the runs shown, the initial value of each of the state 
variable components is zero. Illustrative results of this experimentation 
are presented for two.fourth order plants in Figures 2-38 through 2-41. 
Exact Prediction provided good control performance for both the step and 
ramp desired states. However, Taylor Prediction performance was dependent 

on plant configuration. Control of plants containing a pole at the origin 
(an integration) resulted in good performance for steps, and a steady state 
error for ramps. The control of plants without a pole at the origin resulted 
in a steady state error for steps, and an increasing error for ramps. Figures 
2-38, 2-39, Z-40, and 2-41 present these results, and are typical of the 
Exact and Taylor Prediction control performance for systems through ninth 
order. The Taylor Prediction control results are discussed in paragraph 

2.3, and the analytical reasons for such performance are presented in Appendix E. 
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TAYLOR P.REDICTION CONTROL TO LOWER THAN ACTUAL SYSTEM ORDER 

Up to this point the system order has been assumed to be known. In the 

following experimental study both the system and its order are unknown in 

the sense that the assumed order is less than the true order. This area is 

of interest since it in fact uses no knowledge of the plant to be controlled. 

Stability Boundaries.-System stability was investigated for about thirty plants 

of third through eighth order. Typical stability boundaries are presented in 

Figures 2-42, 2-43, and 2-44. These results indicate the general result that 

the region of stability decreases as the assumed system order becomes smaller. 

Also of interest is-the result that no common stability boundaries exist for 

any order system assumed as a second order system. However, of more importance 

is the result that small common boundaries exist for fourth through eighth 

order systems alternately assumed to be: one less than actual order or third 
order. It must be noted that these common regions of stability consisted 

mostly of marginally stable points. 
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Regulator Results.-Due to the trajectory results for Taylor Prediction actual 

order control, only the regulator problem was considered for lower than 

actual order control. A lim ited number  of such control experiments were 

made  on  fourth through eighth order plants. F igures 2-45, 2-46, and  2-47 
present experimental results for fourth, fifth, and  sixth order plants 

controlled as lower than actual order at stable T-h points. A typical set 
of responses is shown in F igure 2-46 where a  fifth order plant is controlled 

with respectively a  fifth, fourth, and  third order control law. As the 
assumed system order decreases, the controlled response becomes more sluggish 
and  in many cases, as seen by F igure 2-47, results in completely unacceptable 
performance. Such sluggish response was usually encountered in the higher 
order systems controlled as lower order. In most cases, the T-h point was 
a  marginally stable point since the boundary consisted largely of such points. 
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INTERPOLATION PREDICTION CONTROL TO ACTUAL ORDER 

The last area of experimental investigation was Interpolation Prediction. 

The previous experimental procedure used for Mixed and Taylor Prediction 

started with a stability investigation. However, theoretically the Interpola- 
tion Prediction is equivalent to the Exact Prediction provided no singularity 
or ill conditioning is encountered in the matrix of basis vectors and all of 

the state variables are measurable. Thus, the Exact stability boundaries 
were considered to be applicable to Interpolation Prediction as well as 

Exact Predition. The Exact stability boundaries presented and discussed 

earlier are, therefore, of practical interest with regard to Interpolation 
Prediction. 
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The Interpolation Prediction method is not self-starting, i.e., it 

requires the accumulation of the results of a set of initial control actions. 

The experimental start-up procedure used Exact or Taylor Prediction for control 

over N + 2 (N being the assumed system order) decision intervals. After 

these intervals, the Interpolation Predicition method was utilized for system 

control. In the initial set of simulation experiments the interpolation 

matrices were determined once at the start of each run. The start-up period 

was considered to be part of the run and in all cases shown Exact Prediction 

was used during the start-up phase. The start-up portion of the run is 

indicated on each figure. Figure 2-48 has the start-up portion labled and 

the remaining figures have the start-up portion indicated by arrows. Since 
the purpose of the present study was to demonstrate the equality between 

Interpolation and Exact Prediction, the Exact or Taylor start-up method is 

justified as an experimental procedure to accumulate the matrix of basis vec- 

tors. The above and later experimental start-up procedures proved convenient 

tools to investigate causes, effects, and possible solutions for singularity 

and ill conditioning of the matrix of basis vectors (Interpolation Matrix). 

Plan! -rrans,er Function 

G(s) = 

[ (s+0.5)2 + l]$zG + 321 

Run Type: Regulalor 

T = 0.3 h = 0.8 

Enac, Predicrion 

FIGURE 2-48 ERROR RESPONSE OF A 4th ORDER SYSTEM 
- EXACT AND INTERPOLATION PREDICTION 
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The singularity problem is of particular concern in the linear plant 

control case. This problem is a direct result of the linear control policy 
equation, and as such must be avoided by some remedy. One simple remedy is 

to use a non-control policy force, which when included in the matrix of 

basis vectors prevents the matrix from being singular. In the case where 

the matrix is assembled once, and used for the entire run (i.e. no updating) 

the arbitrary non-control policy force was the first (in some cases the first 

and second) control force applied to the plant. In later studies where the 

matrix of basis vectors was updated during the run the one non-control 

policy force was computed by multiplying the calculated control force by an 
arbitrary constant (usually 1.1 or 1.5). This altered value was then used 

as the applied control force. 

The problem of the matrix of basis vectors becoming ill conditioned is 

directly associated with the Interpolation Prediction method, and not with 

the control policy equation of any plant class. The ill conditioning may 
occur in either linear or non-linear plant control situations, and in the 

linear case even if a non-control policy force is included in the matrix of 

basis vectors. 

Over three hundred and fifty Interpolation Prediction control simulations 
were conducted on pole and pole-zero configuration plants of seventh and 

lower order. These studies were performed for zero, step, and ramp desired 
output states. 

Regulator Results .-The following results summarize the numerous experiments 

performed to establish the equality of Exact and Interpolation Prediction 
control performance. In all cases the initial condition of each state vector 

component was -20 units giving eachan initial error of +20 units. 

Figures 2-48 and 2-49 represent the typical correspondence between 

Exact and Interpolation control performance for fifth and lower order systems. 

None of the fifth and lower order systems examined resulted in a singular 
or ill conditioned matrix of basis vectors. This observation is of considerable 
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interest since only one arbitrary control force not calculated by the control 

policy was included in the matrix of basis vectors. 

Run Type: Re.g”l.lor 

T = 0.3 h = 0.8 

- Exact Predlctlon 

-----lnterpolalion Prcdicllon 

FIGURE 2-49 ERROR RESPONSE OF A 4th ORDER SYSTEM 
- EXACT AND INTERPOLATION PREDICTION 

Typical Interpolation Prediction control system performance for pole 

and pole-zero configuration plants of fifth and lower order are presented 

in Figures 2-50 through 2-58. The pole-zero plant configuration control 

performance is of special interest, since it experimentally demonstrates 

the control capability for such plant configurations. 
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FIGURE 2-58 ERROR RESPONSE OF A 5th ORDER SYSTEM 
- INTERPOLATION PREDICTION 

The experimental results for sixth and seventh order systems indicate 

that in about eighty percent of the cases one arbitrary control force did 

not prevent matrix singularity or ill conditioning. However, of interest 

is the result that only about half of the cases encountered very serious 

control performance deterioration. The problem of matrix singularity was 

eliminated in all cases by including two arbitrary control forces in the 

Interpolation Matrix. These arbitrarily selected control forces were of 

small magnitude, and did not seriously affect the control performance. 

Figure 2-59 illustrates the control improvement when two non-control policy 
forces are included in the Interpolation Matrix. However, ill conditioning 

still occurred in a small number of cases. 
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Trajectory Results .-Exact and Interpolation Prediction control performance 

was examined for step and ramp desired states for plants through seventh 

order. An initial value of -20 units was used for each of the state vector 

components. This fact is evident in the initial values of the output error 

at time zero in Figure 2-60 (step of +lO units) and 2-61 (ramp starting at 

zero). The trajectory investigation results were identical to those discussed 

in the previous presentation of regulator results. 

Interpolation Prediction provided good control performance for both 

step and ramp desired output states on all the fifth and lower order pole 

configuration systems. Typical results for the pole configuration plants ' 

are presented in Figures 2-60 and 2-61. It may be noted in both figures that 

the error went to zero with approximately the same controlled response. 

The control of pole-zero configuration plants was found to be dependent on 
the plant transfer function. If the plant contained an integration good per- 

formance was obtained for steps, and a constant error for ramps. These results 

are illustrated in Figures 2-62 and 2-63. The plants without an integration 

exhibited a constant error for steps, and an increasing error for ramps. 

Figures 2-64 and 2-65 show typical control results for such plants. The 
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failure of adequate control for pole-zero configuration plants is discussed in 

paragraph 2.3, and analytical reasons for such performance are presented in 
Appendix E. 
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INTERPOLATION PREDICTION CONTROL TO LOWER THAN ACTUAL SYSTEM ORDER 

The present experimental study was undertaken to determine the control 

effectiveness for Interpolation Prediction carried out in less coordinates 

than the true system order. Since a method of establishing stability 

boundaries for such prediction does not exist at the present time, the lower 

than actual order Exact Prediction boundaries were used as a gudde to 

possible stable T-h operation points. Approximately one hundred control 

simulations were made for systems of third through sixth order. In about 

ten per cent of these cases, unstable system control was observed for the 

T-h values taken from lower than actual order Exact Prediction boundaries. 

Example results are presented in Figures 2-66 through 2-69 for third 

and fourth order systems controlled as second and third order respectively. 

When lower than actual order control is employed the start-up time becomes 

less as is indicated by the arrows in the figures. This results from the 

fact that the interpolation matrices are smaller and less data is required. 

In most cases the Interpolation Predicition with actual system order provided 

the best control performance. Interpolation Prediction with lower than 

actual system order is usually less precise and more sluggish. This 

observation is also true for the fifth and sixth order systems controlled 

as lower than actual order. Figures 2-70, 2-71, and 2-72 illustrate 

typical experimental results for the higher order systems. 

WEIGHTING FACTOR PARAMETER STUDY RESULTS 

The two parameters of our control system are the length of the decision 

interval (T), and the weighting factor (h). These parameters were discussed 

in paragraph 2.1. This study was concerned with establishing experimentally 

the effect of the weighting factor on control system performance. The 

experimental procedure consisted of obtaining the control system performance 

for three h values with a constant T value of 0.6 seconds. In most cases, 
the T-h combination provided stable control points. Both pole and pole-zero 

configuration plants through sixth order were used in this parameter study. 

Approximately fifty Interpolation Prediction control simulations were con- 

ducted on a total of eight systems. 
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FIGURE 2-72 LOWER THAN ACTUAL ORDER CONTROL 
ERROR RESPONSE OF A 6th ORDER SYSTEM 
- INTERPOLATION PREDICTION 

Similar results were obtained for all systems examined with both zero 

and step desired output states. In all cases each state vector components' 

initial condition was -20 units, and Exact Prediction was utilized to obtain 

the matrix of basis vectors during the start-up simulation phase. Typical 
results of the pole configuration plants are presented in Figure 2-73 for 

h values of 0.4, 0.8, and 1.2. It is easily observed that the greater 

weighting factors resulted in more sluggish control. This same observation 

may be seen in Figure 2-74 in control of a pole-zero configuration plant. 

Also, it may be noted that in all cases the low value of h provided the 

fastest and usually most oscillatory response. 

CONTROL FORCE SATURATION STUDY RESULTS 

In the previously described experimental studies the control force was 

unlimited in magnitude. However, in practical control situations, a limit 

would be imposed on the applied control force. Past research into this area 

was of a limited nature, and considered only a limited number of low order 

pole configuration plants. 
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FIGURE 2-73 ERROR RESPONSE OF A 4th 
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FIGURE 2-74 ERROR RESPONSE OF A 4th ORDER SYSTEM 
FOR THREE VALUES OF h 
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The present study was conducted on both pole and pole-zero configuration 

systems of third through sixth order. Also, this study considered three 

different stable points (T = 0.6 for h = 0.4, 0.8, 1.2) for each system. It 

should be noted that experimentation was conducted for both zero and step 

desired output states. As in previous experimentation, each state vector 

component initial condition was -20 units, and Exact Prediction was used to 

obtain the matrix of basis vectors during start-up. Approximately one 

hundred control force saturation simulations were completed for seven 

different systems. 

The control limiting study consisted of determining the system response 

with unlimited control, and 50%, 25%, and 10% control force saturation. The 
experimental procedure was to limit the available control force magnitude to 

a percentage of the maximum control force requested in the unlimited run of 

the particular system being studied. Typical results for the T = 0.6 and 

h = 0.4 combination are presented in Figures 2-75 and 2-76 for two different 

fourth order systems. The results at this low h value indicate that control 

force saturation can cause serious deterioration in control performance. It 

should be noted that no objectionable deterioration is seen in the system 

response until the control force limit is reached about 70% or, more of the time. 

Figures 2-77 and 2-78 show typical results for the T = 0.6 and h = 0.8 

combination for the same two systems. Also, for this h value no series 

deterioration is seen in the system response until the limit is reached 

about 70% of the time. The h = 0.8 system response was unacceptable due 

to sluggishness, whereas the lower h value case was unacceptable due to the 

resultant limit cycle. The experimental results for the T = 0.6 and h = 1.2 

combination were approximately like those obtained for the h = 0.8 value. The 
system response was unacceptable due to sluggishness once the control force 

limit was reached about 70% of the time. 

INTERPOLATION PREDICTION CONTROL - WITH UPDATING 

In the previously described Interpolation Prediction results, the current 

sensitivity and current response were determined only once, and then used 

for the duration of the control simulation. This procedure was justified 
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since the systems under study were stationary, and the only purpose of the 

previous studies was to demonstrate control system performance when Interpola- 
tion Prediction provided good current sensitivity and current response matrices. 

In light of the assumption that knowledge of the plant with respect to such 

factors as time variation is not available, the effects of updating the current 

sensitivity and current response are of practical interest. This study 

considered the problems associated with Interpolation Prediction with updating, 

and their resultant effects on the control system performance. 

The critical problem of avoiding a singular matrix of basis vectors (see 

Appendix F) for zero or step desired output states required that at least 

one non-control policy force be present in this matrix. The control force 

perturbation required to eliminate the singularity was investigated on a 

limited basis. One of two alternate multiplying factors, 1.5 or 1.1, was 

used to alter the calculated control policy force. Therefore, the one non- 

control policy force contained in the matrix of basis vectors consisted of 
either 1.5 or 1.1 times the control force actually calculated by the control 
policy. The effect of such an applied force on control system performance 

is of considerable importance. 

Another problem associated with updating is how and when new data should 
be included in the matrix of basis vectors. The experimentation in this 
area consisted of shifting the most current data into the matrix of basis 

vectors every k intervals. Values of k = 1, 2, or 10 were used for this 
investigation. The related problem of how often to recalculate the current 
sensitivity and current response also was investigated in a very limited 
degree. The new current sensitivity and current response matrices were obtained 

every fifth interval in the majority of the cases. 

The following experiments were conducted using the Interpolation Pre- 
diction which is not a self-starting method. Therefore, a start-up procedure 
was developed to allow Interpolation Prediction control to start at any 
desired initial system state. This procedure required an arbitrary set (equal 
to one greater than the dimension of the basis vector) of control forces 
to be applied to the system from some desired state at time t 

0’ 
The procedure 
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develops the matrix of basis vectors from the system response resulting from 
the arbitrary control forces being applied backwards from the desired state 

at timet 
0’ 

Once the matrix of basis vectors is developed, the current 
sensitivity and current response matrices are calculated, and used to control 

the system from the initial state at time to. This start-up method-is of 

no practical importance, and is used only as an experimental procedure. 

The start-up simulation phase is not included in the runs. At the start 

of each of the runs shown in the following figures the current sensitivity 
and current response matrices have been predetermined by the Interpolation 

method, and so the control is effected by the Interpolation method during 

the entire run. Also, the figures are reproductions of the graphs plotted 

by the computer program with the exception that the axes have been relabeled, 

and the data points have been connected using straight line approximation. 

Experimental Results .-The following results summarize the many experiments 

performed to investigate the above problems associated with updating. About 
sixty control simulations were conducted on twelve pole configuration plants 

of second through fifth order. The first two sets of figures are presented 

to illustrate the effects of the 1.5 and 1.1 multiplying factors. Figures 
2-79 through 2-81 show that the matrix of basis vectors indeed did not go 

singular, but that the 1.5 factor did cause undesirable control for the step 
and ramp desired output states. Figures 2-82 through 2-84 present the results 

obtained using the 1.1 multiplying factor. The-results illustrated by these 
figures indicate that the 1.1 factor was sufficient to keep the matrix of 

basis vectors from becoming singular, and was a small enough perturbation 
so as not to degrade the control performance. It should be noted that the 

above results were typical of those for fourth and lower order sytems. However 
in some cases, the 1.1 multiplication factor was not a large enough pertur- 

bation to prevent ill conditioning of the matrix of basis vectors. This 
fact was usually true for the fifth order systems. Typical results for fifth 
order systems utilizing the 1.5 factor are presented in Figures 2-85 and 
2-86. All of the results thus far presented shifted new data into the matrix 
of basis vectors every other interval, and recalculated the current sensitivity 
and current response every fifth interval. 
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The next set of figures are presented to experimentally demonstrate that 

no non-control policy force need be applied for cases where the desired output 

state is some trajectory. Figures 2-87 and 2-88 show the control performance 

for a ramp desired state with new data shifted into the matrix every interval 

and every other interval respectively. In both cases, the current sensitivity 

and current response were recalculated every tenth interval. No significant 

difference in control performance was encountered for the various k values. 

No matrix singularity was observed in any of the trajectory runs for fifth 

or lower order systems. However, matrix ill conditioning was noted in several 

cases. Figure 2-89 shows the typical matrix ill conditioning effect on the 

control system performance. The matrix of base vectors became ill conditioned 

at 26 decision intervals into the run. The resultant current sensitivity 

and current response matrices were used for the control calculations during 

the next ten intervals. Since these matrices were in error, poor control 

performance is seen during these ten intervals. At the end of these ten 

intervals new current sensitivity and current response matrices were computed, 

and these were used to control over the next ten intervals. These new matrices 

were once again a good approximation to the true plant matrices, and so good 

control resulted during the following portion of the run. 

The last set of figures demonstrate the control performance for two pole 
configuration third order systems for a trajectory desired output state. The 

trajectory is described by the equation: 

r(t) = 30t - 1.5t2 + 0.01666t3 

In both cases no non-control policy forces were used, new data was shifted 

into the matrix of basis vectors every interval, and new current sensitivity 

and current response matrices were calculated every fifth interval. The 

output state and its first derivative are presented along with actual desired 

state in Figures 2-90, 2-91, 2-92, and 2-93 for both systems. These are 
typical control results for the second and third order pole configuration 

systems used in this brief experimental study. 
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2.3 SUMMARY OF ANALYTICAL AND EXPERIMENTAL STUDIES 

ANALYTICAL STUDIES 

The mathematical tools for the study of the control method were developed 

in paragraph 2.1. These included a mathematical description of the type of 

plants considered, a state transition equation relating the values of the 

state variable of the plant at the sampling times, and the control policy 

equation by which the control input to the plant is calculated. Involved in 

implementing the control policy is the prediction of future states of the 

output of the plant without assuming any specific knowledge of the plant. 

Various techniques were introduced as possible predicition methods of which 

Exact Prediction (exact knowledge of the plant dynamical equations) serves 

as a reference against which to measure the effectiveness of other approximate 

types of prediction. 

A Liapunov function is used to provide an analytical basis from which 

to establish stable regions of control operation in terms of the two control 

policy parameters: 

T, the decision or sampling interval length in seconds 

h, an arbitrary weighting factor which is used to emphasize 
or de-emphasize the higher order state variables. 

EXPERIMENTAL STUDIES 

A representative set of experimental data is presented in paragraph 2.2. 

It must necessarily be of a summary nature due to the immense amount of data 

compiled. Over 260 T-h stability planes were plotted for approximately 150 

plants of orders ranging from second through ninth, and over 1500 control 

simulation runs were made to test the actual control characteristics of the 

control policy employing several types of response prediction. 

The types of prediction.studied consisted of a form termed "Taylor 

Prediction" in which a truncated Taylor series is used as an approximation of 

the free and forced response modes of the plant; a form termed "Mixed Pre- 
diction" in which the truncated Taylor series is again used as the approxi- 
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mation of the free response modes and an averaging technique is used to 

obtain an approximation of the forced response mode, and a form termed 

"Interpolation Prediction" in which an interpolation technique is used to 

select a functional which approximates the actual plant input-output func- 

tional without attempting to identify the plant. 

Taylor Prediction.-Taylor Prediction produced stability boundaries which 
were almost without exception as large as those obtained using Exact Pre- 
diction. The Taylor boundaries for the high order plants were actually 

larger than the exact boundaries although a good portion of the larger Taylor 
boundary consisted of T-h points which would give relatively sluggish 
performance. Taylor Prediction is pretty well restricted to those plants 
whose corresponding transfer functions contain only poles as there is no 

clear cut extension to cover the case where the transfer function is allowed 
to contain zeroes. The lower than actual order Taylor boundaries were smaller 
than the actual order boundaries, but this might well be expected. 

The control simulation runs showed that when the actual order of the 
plant was assumed using Taylor Prediction, the control action for regulator 

runs compared very favorably with that using Exact Prediction and was in 
some cases actually better in that the response was less oscillatory. Lower 

than actual order control gave relatively sluggish response in most cases 
and, in particular, when a relatively high order plant (i.e. sixth) was 
controlled as a third order, for example, the response would have to be 
termed prohibitively sluggish although it was asymtotically stable. The 

control action for trajectory runs depended upon the form of the plant and 
the type of trajectory. Steady state errors exist for both a step and ramp 
input if the plant transfer function does not contain a pole at the origin, 

and for a ramp input if the transfer function contains one pole at the origin. 
In contrast, Exact Prediction produces no such steady state errors regard- 
less of the plant configuration. An analysis of the reason for this character- 
istic of Taylor Prediction is presented in Appendix E. In simple terms, the 
difficulty is due to the fact that Taylor Prediction yields approximations of 
the free response matrix and the forced response vector which are understand- 

ably not very accurate, and trajectory 'tracking' requires relatively good 
estimates. 

113 



Mixed Prediction.-Mixed Prediction produced stability boundaries which were 

not considered to be very large as compared with the other prediction methods. 

Reasonable boundaries were observed if the plant order was, at most, fourth, 

but for higher order plants‘T-h planes were either void of stable regions or 

consisted at most of isolated stable points. For this reason, Mixed Predic- 

tion experimental studies were terminated after the stability study phase 

except for a few runs to establish the validity of the analytically estab- 

lished T-h boundaries. 

Interpolation Prediction.-Actual order Interpolation Prediction yielded 

estimates of the free and forced response modes of the plants which were 

sufficiently accurate to allow use of the stability boundaries obtained using 

Exact Prediction a‘s a guide for the control simulation runs. In all cases 

when the plant transfer function contained poles only, exact and interpolation 

control action simulation runs yielded identical performance for regulator, 

step and ramp desired output states. The lower than actual order interpolation 

control action simulation runs gave results very similar to those obtained 

using Taylor Prediction except that the region of stable performance appeared 

to be larger. Controlling plants, whose transfer functions contain zeroes 

as well as poles, yielded actual order results very similar to those obtained 

using Taylor Prediction for plants with poles only, in that steady state 

errors which depended on the plant pole configuration existed for step and 

ramp desired output states. An analysis of the reason for this characteristic 

is given in Appendix E, where it is shown that the errors are not due to 

any shortcoming of the interpolation procedure. Instead they are due to 

the control policy equation used for plants with poles and zeroes. It is 

quite possible that a simple remedy exists and would be an interesting area 

for further investigation. 

The Weighting Parameters.-The weighting matrix introduced in paragraph 2.1 

has the effect of weighting the state vector of the plant so as to control 

the importance of the higher ,order state vector components. The experimentatic 
presented in paragraph 2.2 illustrated that for a given value of T, the decisic 

interval length in seconds, small values of h, the arbitrary weighting factor, 

tend to make the control action oscillatory and the response very fast. Large 
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values of h make the response more sluggish as the control policy seeks to 

control more precisely the higher order state variable components. As the 
value of T becomes smaller, the response for a given value of h is more 

ostiillatory, resulting in the area of the T-h stability plane near the origin 
being unstable for virtually all plants. 

Control Force Saturation.-Although imposing a limit on the available control 
force is strictly not in the realm of linear studies, it is recognized that 
all practical situations have limitations of this nature. For this reason, 
an experimental study of the effect of control force limitation on the linear 

control policy was performed. The effect of control force limiting or saturation 

is to prevent the system response from following the optimum trajectory as 
defined by the linear control policy in the state space. For relatively 

large h values, the response was made more sluggish by control force saturation 

in cases where the linear control policy requested control forces exceeding 
the limit a majority of the time. For small values of h, the response was 

made more oscillatory in many cases. In some cases, a limit cycle occurred 
with the control policy requesting control forces alternately greater than 

the positive and negative limits. 

Updating the Interpolation Predicition .-The Interpolation procedure is very 

compatible with one of the basic premises of the control method under study, 
I.e., control of a plant in terms of estimates of its current response and 
current sensitivity. The interpolation estimates of the plant response may 

be calculated in terms of the most applicable sets of measured basis vectors. 
Updating implies revising the interpolation estimates of the plant response 

in terms of, usually, the most recent measured data. Theoretically, the 
estimates need not be updated when a system is linear and stationary, but 
a study in this area provides a convenient starting point. 

The central problem in the Interpolation procedure is to avoid using 
a matrix of basis vectors which is singular. When the desired state of a 
system is the origin of its state space, any linear control policy which 
determines the control forces in terms of a linear combination of the state 
variables will result in a singular matrix (see Appendix F). The experi- 
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mental studies conducted on linear stationary systems showed that this problem 

may be circumvented by including one or two non-control policy forces in 

the matrix. This took the form of multiplying the calculated control forces 

by a fixed constant which may for fourth and lower order systems be as small 

as 1.1, which alters the calculated control force by only 10%. Higher order 

systems which result in larger matrices may require larger multipliers to 

prevent the matrix from being 'ill conditioned'. Another preliminary conclusion 

is that when the system is performing well, it is best not to update. This 

is exemplified by the case where the input is a constant position and the 

initial transients have died out. In this case, all of the derivatives will 

become infinitesimally small. Ill conditioning then results from the fact 

that several of the rows of the matrix of basis vectors will be close to 

zero and therefore very close to being linearly dependent. 
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SECTION 3 

CONTROL OF LINEAR TIXE-VARYING PLANTS 

3.1 DERIVATION OF PLANT AND SYSTEM EQUATIONS 

A study of the control of linear, time-varying plants is a second step .t 
in the investigation of the general feasibility of the control method. 

Although the principle of superposition still applies, it, along with many 

other of the general linear analytic tools, is not quite as all-powerful 

as one is usually led to believe by the study of linear stationary systems. 

Before considering the analysis of time-varying plants, it is best to 

digress for a moment and consider just what is meant by a time-varying 

plant. In developing a mathematical description of a physical quantity, 

usually a group of elements are isolated and termed the plant, and any 

outside events which affect the elements of the plant are considered to be 

inputs or disturbances (reference 1). In the case of a single input plant, 

the primary input signal to the plant is identified and the analysis pro- 

ceeds to consider the effects of this input on the plant. Those quantities 

which are insensitive to the input signal are termed plant parameters, and 

those which are affected by the input are termed plant variables. 

One of the basic assumptions in this single input, plant parameter, 

plant variable method of analysis is that the plant is autonomous with 

respect to other outside events. In many cases this is approximately true 

and the autonomous assumption yields meaningful results. In other cases, 

however, the effect of outside events on the plant cannot be ignored, and 

it becomes difficult to decide which elements of the plant shall be con- 

sidered parameters and which shall be considered plant variables. To 

preserve the single input concept, if the effect of the secondary inputs 

may be considered independently of the primary signal, and affect only 
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those quantities which are parameters as far as the primary input is con- 

cerned, then the parameter variations due to the secondary inputs may be 

described as functions of time and the plant termed "time-varying". Many 
physical examples of this situation exist. A high performance aircraft 
moving through a wide range of Mach numbers at various altitudes is one. 
The change in Mach number and altitude reflect in the variation of certain 

parameters of the plant over wide ranges which cannot be ignored. For the 
purposes of analysis, these parameters may be considered time variable 
parameters as far as the primary input is concerned. 

METHODS OF ANALYSIS 

The physical plant is assumed to be describable by a linear differ- 

ential equation with coefficients which are continuous functions of time. 

L(p,t) c(t) = M(p,t) m(t) (3-l) 

The plant is also assumed to possess a single input, m(t), and a single 
output, c(t). L(p,t) and M(p,t) are linear differential operators of orders 

n and m respectively, where the derivative coefficients are functions of 

time. Although equation 3-1 suffices to describe the type of plant to be 
considered, it is advantageous to write the mathematical description in 

state-space notation: 

&(t> = g(t) x(t) + G(t) u(t) (3-2) 

y(t) = e(t) x(t) (3-3) - 
where x, u, and y are n, p, and q vectors respectively, and the matrices - - - 
g(t), G(t), _ and D(t) are continuous functions of time. Equations 3-2 and 
3-3 are termed the dynamical equations of the plant (reference 2). Equa- 
tion 3-1 and the equation pair 3-2 and 3-3 become equivalent if u(t) and 

y(t) are identified as: 

g’(t) = 1 m(t) Ii-l(t) . . . . . . h, (3-4) 
n-l 

y'(t) = p(t) C(t) . . . . . . c WJ (3-5) 

in which case p = m+l and q = n. The quantity x(t) is identified as the 

state variable of the plant. As was the case for linear stationary plants, 

the state variable is not unique; however, any choice, g(t), is relatable to 
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any other choice, z(t), by a linear transformation of the form: 

z(t) = E(t) x(t) (3-b) 

subject to the condition: 

(3-7) 

where c 1 and c2 are fixed constants, and l 

I I  I I  

is the Euclidean norm 
(reference 2). 

As was the case in the linear stationary plant study, it is necessary 

to restrict the matrix D(t) to be the identity matrix I. - The plant dynamic 
equation pair 3-2 and 3-3 therefore reduces to the single equation: 

g(t) = H_(t) x(t) + G(t) u(t) (3-B) 

where: 

x'(t) f y'(t) = 1 c(t) G(t) n-l . . . . . . c (t) - 

and the forms of H(t) and G(t) are: - - 

Il(t> = 

I 

\ 
\ 

0 
1 

-Ag(t) 
\\\ 

-Al(t) . . . . . . . -An&t) 

I 

0 

g(t) = 

BOW Bl(t) . . . . . . . B,(t) 

(j-9) 

(3-10) 

(3-11) 

where Ai and Bi(t) are the time-varying coefficients of the i th deriva- 
tives of the left and right hand sides, respectively, of the plant differ- 
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ential equation 3-1. H(t) is a square matrix of order n, and G(t) is a 

rectangular matrix with n rows and m+l columns. 

THE STATE EQUATION -- 

The general solution of the plant dynamical equation 3-8 is given by: 

t 

x(t) = g(t,to, x0> = F(t,to) x(O) + 
s 

F(t,-c) G(T) U(T) d-r (3-12) 

t 
0 

where F(t,t,) is the transition matrix of the free differential equation, 
and x(O) is the value of the state variable at t = to. Equaition 3-12 is 

valid for any t>t,. 

The General State Equation in Terms of t = kT" Initial Conditions.-Since 
the control action is effected by an on-line digital computer, the specific 
control functions (plant inputs) considered are those which are piece- 
wise constant over decision or sampling intervals of equal lengths (T sec- 

onds). Thus, as was the case for linear stationary systems, the plant 
input, m(t), is constant over the intervals kT<t<(k+l)T. Equation 3-12 

may conveniently be written in the discrete form of equation 3-13, where T" 
is the fictitious time defined in Appendix A and discussed in Section 2 on 

linear stationary systems: 

z((k+l)TO) = F((k+l)T,kT) +T") + X((k+l)T,kT) uk (3-13) 

Equation 3-13 is not as useful as was its linear stationary counterpart, as 
F(t,t,) and ~(t,t,) are no longer constant matrices for constant T. If the -, 
plant is relatively slowly time-varying, F((k+l)T,kT) and h((k+l)T,kT) will be 
relatively slowly time-varying. In the limit as the time variation is ex- 

tremely slow, it may be possible to assume F((k+l)T,kT) -+E and 

X((k+l)T,kT) w h over the time interval (ta, b t ) during which control is 

desired. Equation 3-13 will be referred to as the general discrete state 
equation for time-varying systems. 
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The General State Equation in Terms of Measureable States.-As was the case 

for linear stationary plants, the state equation in terms of the states at 
kT* is of limited usefulness when the control policy must be implemented on 

the basis of physically existent states. For this reason, a state equation 
of the form of equation 2-17 of paragraph 2.1 is written: 

x((k+l)T-) = F((k+l)T,kT) $kT-) + bl((k+l)T,kT) uk + b2((k+l)T,kT) uk-1 

(3-14) 
It should be noted that equation 3-14 differs from equation 2-17 in that 

the free and forced response matrices are time-varying. If the differential 
equation which describes the plant does not contain derivatives of the 

input, m(t), b2((k+l)T,kT) will be zero and the forced response of the 
plant is describable in terms of the single forced response vector 

blW+l)T,W. 

ESTIMATIOJ AND PREDICTION 

The response of the plant may be broken down into two parts, the first 

being what may be termed the free response which would occur in the absence 

of any control input. The second part may be termed the forced response, 

or that part of the response which is due to the control input. The state 

equation may be written in terms of measurable states which exhibit the 

two responses: 

x((k+l)T-) = zk((k+l)T-) + bl((k+l)T,kT) uk + b2((k+l)T,kT) uk 1 

(3-15) 

where x -k ((k+l)T-) is the free response of the plant and the second two 

terms in equation 3-15 comprise the forced part of the response. The 

general problem of prediction is concerned with the estimation of the 

free response zk((k+l)T-) as compared with the desired state. An appropriate 

control force, u k' is calculated by the control policy to better align the 

actual and desired states on the basis of the estimate of the state z((k+l)T-) 

if no control force were applied. For a more complete discussion of the 

prediction problem, refer to paragraph 2.1 on linear stationary plants. 
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Interpolation Prediction. -For a general development of the basic interpola- 

tion equations, refer to Appendix B, as only that part which is applicable 
to the linear time-varying case is considered here. In terms of the inter- 
polation development (references 3 and 4), the estimate of the state at 

t = (k+l)T- is given by the equation: 

g((k+l)T-) = &g-l A("k,%) (3-16) 

where ';r is the estimate of 2 at t = (k+l)T- 

A linear term in t may be added to the set of base .functionals to ac- 

count for the time variation of the plant. If the plant is relatively 
slowly time-varying, the approximation may be sufficiently accurate for a 

relatively long period of time. As the interpolation estimate becomes in- 
sufficiently accurate, a new estimate may be made by an updating pro- 
cedure which uses more current data for the set of measured base functionals 

included in @ -* 

The base vector including a linear term in t will be: 

~'(u~,~~) = ,s'(iT) ui Ui-1 T 1 (3-17) 

where T is the length of the sampling interval in seconds. The matrix of 
vector base functions, 2 , consists of an appropriate set of pi's which 

need not be consecutive. Since the base vector pi contains one more term 

( T ) than the linear stationary case, one more interval of data is re- 

quired and the interpolation matrices will be increased by one in order. 
The matrix B is now partitioned into four submatrices: 

(3-18) 

where, if the assumed order of the matrix is p, th 
21 is a p order square 

matrix, and Cp -1' $9 and g3 are p vectors. The interpolation procedure 
yields as an estimate of x((k+l)T-): 
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X((k+l)T-) = gl x&T > + i$ Uk + 92 Uk-l + if3 T (3-19) 

where $9 El, $9 and Cp -3 are constant matrices. 

The correspondence between the interpolation estimate of x((k+l)T-) and 

the exact value as given by equation 3-15 is not as direct as was the case 

for linear stationary plants. The time-varying nature of the actual free 

and forced response matrices is accounted for in a single term e3 T in the 

interpolation estimate. 

THE CONTROL POLICY 

As was the case for linear stationary systems, the control policy for 

linear time-varying systems will be to minimize the quadratic form (refer- 

ence 5): 

Min [3 Qk = Min 
Uk Uk 

[&((k+l)T) E eUk+l)Tj (3-20) 

The error state vector, e(t), is as it was defined in paragraph 2.1: 

e(t) = r(t) - x(t) (3-21) 

In order to provide continuity, the control policy equation is written 

in terms of the fictitious time kT". In Appendix A it is shown that the 

interpolation equation 3-19 may be written in terms of kT" in the form: 

g((k+l)T“) = gl xW") + -E'~ Uk + Z3 T (3-22) 

where (0 
-e 

is given by; 

s = q + 8 -l -1 02 
(3-23) 

Substituting the interpolation estimate of x((k+l)TO), equation 3-22, into 

the expression for Q, according to the definition equation 3-21 yields an 

expression for Qk in terms of uk: 

124 



Q, = r'((k+l)T")- x'(kT') "; - uk 2' - T 
c e '; 1 g 

C f((k+l)T") - 21 x(kT") - 'Pe uk - f3 T 1 
(3-24) 

The assumption is made that L(t) is continuous at t = (k+l)TO and the To 
notation has been included in r(t) for the sake of uniformity only. 

Differentiating Q, with respect to uk yields: 

dQ, z-2 q’ K 
d"k -e - - 21 x(kTO) - F3 T 1 + 2 “; !i ye Uk 

(3-25) 

getting equation 3-25 equal to zero will yield the value of uk which will 

minimize the quadratic form Qk. Equation 3-26 is the control policy equa- 
tion in terms of the fictitious time kT": 

ye ‘K C r((k+l)TO) - 51 $kT") - P3 T 1 
Uk = 

9; ii (be (3-26) 

Assurance that equation 3-26 yields a minimum rather than a maximum is 
provided by differentiating 3-25 and realizing that g is defined to be 

positive definite: 

-- (3-27) 

In order to place the control policy equation in a form which contains only 
measurable states, use is made of a relationship derived in Appendix A: 

z(kT') = x(kT-) + $-lg2 uk-l (3-28) 

substituting equation 3-28 into equation 3-26 yields as a practical control 

policy equation: 
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(0’11 -e r((k+l)T)- i1 z(kT-1 - P2 '-$-I - !?3 T 1 (3 -29) 

Q ’ .K Cp -e --e 

,;r?>x CCWMENTS ON STABILITY 

As is pointed out by Gibson (reference l), the subject of stability of 

time-varying systems is one about which the definitive word has probably 

not been said yet. Many of the basic theorems which apply to the second 

nethod of Liapunov are valid for time varying systems; however, because of 

the difficulties involved with forming useable Liapunov functions, en- 
gineering applications are rare. 

There is a strong tendency to discuss time-varying systems in terms - 

of poles and zeroes which move about in the complex plane. This concept is 

not without its pitfalls, as there is a tendency to connect the transient 

response of the system with the ephemeral locations of the 'poles' when no 

such connection exists. Describing stability of the plant in terms of the 
movement of the 'poles' back and forth between the left and right half 

planes can be misleading. Gibson quotes an example where the 'poles' of a 

time-varying plant are restricted to the left half plane, but the actual 

response can be unstable under certain conditions. 

3.2 EXPERIMENTAL STUDIES 

The function of this section is to present the experimental control 

system performance for low order linear time-varying systems. The 

Interpolation Prediction method was used throughout this experimentation, 

since it displayed the most rewarding results on the linear nontime-varying 

systems. 

The objectives of this experimental program were: 

To determine the control performance of the control 
system using the Interpolation Prediction method for 
a selected set of linear time-varying plants. 
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To investigate areas of interest such as updating, and in- 
clusion of the decision interval time (T) in the basis vector. 

These primary objectives are considered along with some discussion of the 
experimental procedures in the following paragraphs. 

LINEAR TIME-VARYING PLANTS 

In order to meaningfully establish the feasibility of the control 

system for time-varying plants, it was necessary to select a limited, but 

representative set of such plants. This set consisted of second and third 
order pole configuration plants. Also, only linear and sine time variations 
were considered in this experimentation. The range and speed 
of a single time varied parameter were studied for each plant 

The free (uncontrolled) response of two types of time-varying 

is shown in Figures 3-1 and 3-2. 

of variation 
configuration. 

plants studied 

EXPERIMENTAL RESULTS -~ 

This experimental study consisted of approximately seventy-five con- 
trol simulations on the selected time-varying plants. Areas of interest 

such as how often new data should be included into the matrix of basis 
vectors, the effect of using one non-control policy force on the control 
system performance, and how often the current sensitivity and current 

reponse should be recalculated were investigated in the course of the fol- 
lowing experimentation. Rather severe parameter time variations with 
respect to range and speed of variation were considered in order to more 
firmly establish meaningful conclusions. All the following experimenta- 
tion was conducted with -40 units as an initial condition on each component 
of the state vector. 

The same experimental start-up procedure utilized and described for 

the linear stationary case with updating was used in these studies. This 
procedure is of no real importance, since it only provided an artificial 
method for starting the control simulations at any initial state. 
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PLANT EQUATION 

'c' + (0.80 +O.O&%t) t + c = 0 

TIME-VARYING PLANT 
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Second Order System Results. -Typical results of the second order time- 

varying system control experiments are given in Figures 3-3 through 3-14 

for a step desired output state. In all of these cases the plant damping 

was a linear function of time. Two ranges of the time-variation are 

presented, approximately increasing the damping from 0.40 to 0.80 and de- 

creasing it from 0.80 to 0.40 in twenty decision intervals. The equa- 

tions describing these two systems are respectively: 

‘c’+ (0.80 + 0.06666t) I! + c = m(t) (3-30) 

‘c’+ (1.60 - 0.06666t) I? + c = m(t) (3-31) 

The plant natural frequency in both cases is one. Control of the second 

order plants as linear nontime-varying plants is presented in Figures 3-3 

and 3-4 .whereas Figures 3-5 and 3-6 show the control performance for the 

same plants when the decision interval time (T) was included in the basis 

vectors. For both cases a constant error exists in the resultant output 

state. Figures 3-7 through 3-10 show the control results for these plants 

without (T) in the basis vector, but with updating the interpolation 

estimates of the system response matrices every fifth and second interval. 

In general, stable and adequate control was observed. Figures 3-11 through 

3-14 show the result of including (T) in the basis vector, and recalculating 

the current sensitivity and current response matrices every fifth and 

second intervals. It appears that in most cases the best control is pro- 

vided in the case where (T) is included in the basis vector and the system 

matrices are updated every second interval. 

The effect of the inclusion of (T) in the basis vector is an area 

which will require more study to draw any concrete conclusions. It might 

be expected that inclusion of T may be of more significant help for more 

slowly time-varying plants where updating would not be necessary quite so 

often. 
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A few cases, such as exhibited by Figures 3-7 and 3-13, were en- 

countered due to insufficient frequency of updating the system matrices. 

Figure 3-7 shows the control action resulted in a slight constant offset 

error; this may also be due to the l.lcontrol force multiplying factor. 
The lack of updating with sufficient frequency is particularly evident in 
Figure 3-13 where the response arrived at several intermediate plateaus. 

When an update occurred the control action was such as to reduce the error 
in successive steps until the output arrived at the desired state. The 
plateau effect is removed by updating every second interval as is shown 

in Figure 3-14. 

The results obtained should be expected due to the wide range and 

speed of the time-varying parameter. In all of the updating experimenta- 

tionnewdata was shifted into the matrix of basis vectors every interval, 

and a multiplying factor of 1.1 was utilized to keep one non-control policy 
force present in this matrix. 

Figures 3-15 through 3-18 show typical results for plants with slower 

time variation of damping for both step and ramp desired output states. 

The corresponding system equations are: 

'c + (0.72 + 0.0333t) k + c = m(t) (3-32) 

c + (1.68 - 0.0333t) 6 + c = m(t) (3-33) 

Figures 3-15 and 3-16 give the control results for the first plant, where 

the damping varied from about 0.36 to 0.76 in forty decision intervals. 
The following figures, 3-17 and 3-18, show the control response for the 

second plant, where the damping varied from about 0.84 to 0.44 in forty 
intervals. In these four runs, the decision interval time (T) was in- 
cluded in the basis vector, new data was incorporated in the matrix of 
basis vectors every interval, and the current sensitivity and current re- 
sponse was updated every fourth interval. Also, the 1.1 multiplying 
factor was used for the step desired output state runs of Figures 3-15 and 
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3-17. These results indicate that the slower the parameter time variation, 

the less the necessity for frequent recalculation of the current sensitivity 

and current response matrices. 

Third Order System Results.-The first set of experiments were conducted on -- 
a plant with an integration, a natural frequency of one, and a damping with 

linear time dependence. The system equations are: 

'k' +(0.88 + 0.06666t) 'c'+ G = m(t) (3-34) 

'6' + (1.52 - 0.06666t) 'c' + 6 = m(t) (3-35) 

Figures 3-19 through 3-22 illustrate the control performance for the case 

where the damping decreases from about 0.76 to 0.16 in thirty intervals. 

The first two Figures, 3-19 and 3-20, show that with (T) in the basis 

vector and no updating of the system matrices, a constant, error results 

for both zero and step desired output states. The latter two figures along 

with Figures 3-23 and 3-24 demonstrate the control performance for de- 

creasing (0.76 to 0.16) and increasing (0.44 to 1.04) damping respectively. 

These four figures illustrate that with the decision interval (T) included 

in the basis vector and updating every second interval, satisfactory con- 

trol resulted for both zero and step desired output states. 

A few control experiments were conducted on a plant with an integra- 

tion, a damping of 0.3, and a natural frequency with linear time dependence. 

In the worse case examined the natural frequency varied from 2.44 to 9.4 in 

thirty decision intervals. Example control results are presented in 

Figures 3-25 and 3-26. 

The third set of experiments were made on a plant with a natural fre- 

quency of one, a damping of 0.3, and a real pole with linear time depend- 

ante. The real root was varied from 1.9 to 9.4 in twenty-five and fifty-six 

intervals. The control results obtained for the case of the parameter 

variation over twenty-five intervals were very poor. However, good control 
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performance was observed for the case of the parameter variation over 
fifty-six intervals. Figures 3-27 and 3-28 present the latter experi- 

mental results. Figure 3-28 shows the controlled system response differs 

from the desired output state at about 20 decision intervals into the run. 
This event was due to a slight ill conditioning of the matrix of basis 
vectors, which resulted in poor current sensitivity and current response 

matrices being used for two decision intervals. 

A limited number of control simulations for plants with the real root 
as a sine function of time were made in the last stages of this investiga- 
tion. The majority of these experiments were done on a plant with a 
natural frequency of one and a damping of 0.3. The real root was varied 
from about 3.95 to 5.55 as a sine function of time with a frequency of l/8, 

l/4, and l/2 the natural frequency of the plant. Figures 3-29 and 3-30 
show typical results obtained for zero desired output state. In these re- 
sults the real root varied at l/8 and l/4 the plant's natural frequency 

respectively. Figures 3-31 and 3-32 show the control performance under the 

same conditions, but for a step desired output state. The deterioration of 
control performance due to matrix ill conditioning becomes worse as the 

real root variation frequency is increased. 

In all the third order systems presented, a 1.1 multiplying factor was 
used to keep one non-control policy force in the matrix of basis vectors, 
new data was included into this matrix every interval, and the current 

sensitivity and current response was updated every other interval. 

3.3 SUMMARY AND EVALUATION OF EXPERIMENTAL RESULTS 

The experimental results presented in the last section indicate that 

low order systems with rather severe time variation may be stably and ade- 

quately controlled by our control system. It should be noted that only two 
T-h combinations were investigated in the experimental studies. These were 
T= 0.6, h = 0.8, and T = 0.3, h = 0.8. Stable performance was observed, 
and similar control results were obtained for both T-h cases. The control 
performance was affected by several factors which are associated with the 
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Interpolation Prediction method. These factors are considered in the fol- 

lowing paragraphs. 

Time Augmented Basis Vector. -The inclusion of the decision interval time ---- 
(T) in the basis vector resulted in a stable controlled response, but with . 

a steady state error for zero and step desired output states. This result 

is more than likely due to the very large and fast time variation studied 

in this investigation. -The conclusion that the presence of (T) in the 

basis vector is not sufficient for plants with fast time variation seems 

to be well grounded. However, no conclusion may be made for slow time- 

varying plants of any order until investigations are conducted in this 

area. 

Updating Current Sensitivity and Current Response Matrices.-A second way to 

account for the plant being time-varying is to include new data into the 

matrix of basis vectors each interval and to update the current sensi- 

tivity and current response matrices every n intervals. The basis vector 

did not include (T) for this study. The results lead to the conclusion 
that for fast time-varying systems good control is possible. However, for 
fast time-varying systems, the control performance is a strong function of 

the frequency of updating the current sensitivity and current response 

matrices. Also, the problem of inaccurate current sensitivity and/or cur- 

rent response matrices due to ill conditioning of the matrix of basis 

vectors becomes evident. 

Time Augmented Basis Vector and Updating.-The last area of investigation 
combined the previous two methods utilized in control of time-varying plants, 

Based on the experimental results, the prime conclusion is that this com- 

bination resulted in control performance slightly better than the best pre- 

vious method of only updating the system matrices. Since the systems 

investigated were rather fast time-varying, the inclusion of (T) in the 

basis vector does not outstandingly affect the control performance. Once 
again, the problem of matrix ill conditioning is noticeably present. 
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Ill Conditioning.-In the previously presented experimental results, the 
current sensitivity and current response matrices were updated every n 

intervals, where n>l was a program input. Such arbitrary updating resulted 
in the matrix of basis vectors becoming ill conditioned for one of two 

reasons. The ill conditioning occurring in the majority of the cases was 

due to two or more rows of the matrix of basis vectors being almost pro- 

portional to each other. This was noted many times when the actual and 

desired output states were approximately identical over a number of inter- 

vals. This condition resulted in several rows of the matrix of basis vectors 
being almost proportional. Matrix ill conditioning due to two or more 

columns being almost proportional was noted in a very few cases. Each time 
this event occurred the actual and desired output states were approximately 
identical over a number of intervals, and two approximately equal control 
forces were applied during this past set of intervals. In both of the 
above cases the fact that the desired output state was either zero or a 

step enhanced the possibility for such ill conditioning. The overpowering 
conclusion, with regard to avoiding matrix ill conditioning, is that if the 

actual and desired output states are identical to some degree of satisfaction 

no new updated current sensitivity and current response matrices should be 
obtained for system control. In noting this and previous conclusions con- 
cerning updating of the system matrices, it becomes quite evident that fast 
time-varying systems require frequent updating until the desired output 
state is realized, and then less frequent updating to avoid matrix ill con- 
ditioning. This implies the desirability for some monitoring procedure to 
decide when updating is desirable for continuing good system control. 
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SECTION 4 

CONTROL OF NON-LINEAR PLANTS 

4.1 DERIVATION OF PLANT AND SYSTEM EQUATIONS 

A study of the control of non-linear stationary and non-linear time- 

varying plants is the final step in the investigation of the general feasi- 
bility of the control method. This final step is a large one as the area 

of non-linear control systems is a highly segmented one, in that there 

are many isolated methods of analysis and synthesis which apply to limited 
claoses of problems but no general method which applies to all. The word 

non-linear itself perhaps implies the difficulties involved in the field 
as it is a negative definition, relying on the definition of linear 

systems to define what is non-linear. 

METHOD OF ANAL%SIS 

The dynamics of the physical plant are assumed to be describable by 
the following very general type of non-linear differential equation: 

L(p,t) c(t) + F(t, c(t), c(t), l l .  ,%l(t)) = M(p,t) m(t) 

(4-l) 

where the plant is assumed to have a single input, m(t), and a single 

output, c(t). L(p,t) and M(p,t) are linear differential operators with 
variable coefficients and are of orders n and m respectively. The function, 
F, is a non-linear function of its arguments. 

An input-output relationship for the plant is conveniently expressed 
in terms of a functional relationship: 

c(t) = TF(t>3 (h-2) 
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,volterra (reference 1) presents a proof that if the functional T m(t) is [ 1 
continuous, it may be approximated to any desired degree of accuracy over 

finite time intervals by a finite series of the form: 

c(t) = y(t) + hj (t,rl, . . . rj> m(rl> . . . m(rj) drl . . . dr. 
J 

(k-3) 

The essential restrictions are that the system produce continuous and 

bounded outputs for continuous and bounded inputs. If T m(t) can be c 1 
represented exactly by a converging infinite series (J = a> of the form 

of equation 4-3, it is called analytic (reference 1). Volterra and George 

(reference 2) show that equation 4-3 can be interpreted as a functional 

generalization of the Taylor series expansion for the analytic functional. 

In equation 4-3, y(t) represents the free response which would occur 

in the absence of any control input, m(t). It is important to note 

that equation 4-3 does not imply superposition because the kernels, h., are 
J 

not unique and depend upon y(t). Analytical procedures have been outlined 

by George (reference 2), McFee (reference 3), and Flake (references 4 and 5) 

for determining the kernels. 

The functional representation presented encompasses a broad class of 

plants. Continuous non-linearities and time-variations are permitted 

(reference 6). Discontinuous non-linearities, such as relays in the plant, 

are about the only features excluded. Discontinuous time-variations are 

permissible if their occurrences can be easily recognized, as in the 

staging of a missile. 

The particular control method under study assumes the existence of a 

functional relationship of the form of equation 4-3 but makes no attempt 

to identify it. The control element instead senses the current response of 

the plant along with the current sensitivity to control action and extrapo- 

lates this into the near future. Two analytical developments are presented 

in the following sections which serve as a basis for such a type of control 
action. 
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_PLANT FUNCTIP_N_rl?L_R_EBRESENTATION USING INTERPOLATION 

By considering the functional to be analytic in the interval over which 

it is being approximated, it is convenient to expand the input-output re- 
lationship to a vector relationship in which the successive state variables 

possess a derivative relationship. The input state variable, u(t), and the 

output state variable, x(t), are defined by equations 4-4 and 4-5: 

x'(t) = 1 c(t) 6(t) . ..%l(t). (4-4) 

g'(t) = ,m(t) i(t) . . . E(t) (4-5) 

A convenient way of representing the state equation of the plant is: 

x((k+l)T) = Q(k+l)T) + Ak((k+l)T) ck (4-h) 

where: 

k-l 

zkUk+l)T) = y((k+l)T) + 
c 

$((k+l)T) % (4-7) 
i=O 

Equation 4-7 defines the first term of the right hand side of equation 4-6 

as the current response of the plant due to that response which would 
occur in the absence of any control inputs, y((k+l)T), and that due to all 

past control forces previous to uk. Superposition is not implied as the 

Ai's will depend upon 1 and the previously applied 2's. The second term on 

the right hand side of equation 4-6 is the current sensitivity of the plant 

to the control input gk. Again, superposition is not implied as Ak is not 
a unique constant of the plant, but is a function of past states, y(t), and 
the past control forces. 

The Interpolation Equation.-Refer to Appendix B for the general development 

of the interpolation procedure. The interpolation estimate of the state 
at t = (k+l)T is given by (references 7 and 8): 

% ((k+l)T) = $ -l 2 (u,, +) (b-8) 
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The vector of base functionals & is considered to be limited to quadratic 

terms. A linear term in t may be included to account for time variation 

of the plant parameters; however, for the sake of simplicity, it is omitted 

here. The basis vector may be written as: 

A’ (Ui,2i) = z'(iT) zIz(iT) x x 
A-!5 

'(iT) ui~'(iT) ui ui2 (4-9) 

where x.x (iT) 
Ik 

consists of all possible cross-products of the elements of 

x(iT). The matrix of vector basis functions, 3, consists of an appropriate 
set of $J~'.s which need not be consecutive, but can be that set which best 

represents the current behavior of the plant. The dimension of each basis 
vector is given by: 

d =3p+y+2 (4-10) 

where p is the dimension of x(iT). The dimension of 2 will therefore be 
d x d. The g matrix is factored into six submatrices: 

g= Dx 2-l = i1; 22 ; 23 ) LL4 I 21 ; 22 (4-11) 
I I I I I 1 

where for an assumed order p for x(iT), the order of ~31, g2, and &4 is 

P x P¶ the order of 8 -3 is p x w , and cp -1' and 22 are p vectors. 

The interpolation estimate of the first term on the right hand side 

of equation 4-6 is given by: 

zk((k+l)T) = + gg2(kT) + g3xixi(kT) 1 (4-12) 

Similarly the estimate of the second term of the right hand side of 

equation 4-6 is given by: 

G( (k+l)T) - + $1 i (~‘~1 1 
and: 

(4-13) 

gk = 2 
Uk Uk 
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p 

xk((k+l)T) is a p vector, the order of &((ktl)T) is p x 2, and gk is a 2 x 1 

vector. 

Assembling the estimates of xk((k+l)T) and -&((k+l)T) yieldsas the 

interpolation estimate of x((k+l)T): 

x(ik+l)T) = xk((k+l)T) + &((k+l)T) gk (4-15) 

where xk, & and gk are defined by equations 4-12, 4-13, and 4-14 respectively. 

THE NON-LINEAR CONTROL POLICY 

As was the case for the linear studies, the non-linear control policy 

will be to minimize the quadratic form Q, (reference 6): 

(4-16) 

where the error state vector e(t) is as it was defined for the linear studies: 

e(t) = r(t) - x(t) (4-17) 

Regardless of whether the interpolation procedures or the Volterra 
representation of Appendix G is used, the estimate of the state at &((k+l)T) 
is of the form: 

x((k+l)T) = xk((k+l)T) + &(k+l)T) ;k (4-18) 

Substituting equation 4-18 into equation 4-16 according to the definition 

equation 4-17 and dropping the time notation for the sake of compactness 
yields: 

Differentiating Q, with respect to uk yields: 
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where: 

(4-20) 

2 Uk, (4-21) 

It is convenient to modify the notation slightly at this point 

according to the definitions of equation 4-22: 

xk((k+l)T) I [is l&o] (4-22) 

ga ((k+l)T) = xk - rk 

Substituting the notation of equation 4-22 into equation 4-20 and 

setting the derivative of Q, equal to zero yields: 

Collecting the terms of equation 4-23 according to powers of uk yields: 

+ ‘2&o $&sA+&~a&uk+&Kg*=O (4-24) 

Equation 4-24 is a cubic equation in terms of uk which guarantees that at 

least one real root exists which will minimize the quadratic form Q,. 

Zaborszky (reference 6) outlines a convenient method of extracting the 

proper root of equation 4-24 for the case where the coefficient of the 

linear term is predominant. Other techniques would be numerical methods 

such as Bairstows or Newton. The degree of non-linearity of the system 

will have a lot to do with what technique is appropriate. 
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4.2 COMPARISCN OF THE TWQ METHODS OF PLANT FUNCTIONAL APPROXIMATION 

A method for plant functional representation using interpolation has 

been established in paragraph 4.1, and Appendix G describes a Volterra series 

representation of a plant. As a practical matter, based on considerations 

of time and funding, it was necessary to choose one of the two representations 

for simulatory study and resultant analysis. The interpolation method was 
chosen largely for two reasons: 

Its linear analog had been previously successfully tested in our 
work, and had known validity. In contrast, the Volterra series 
description had not been so tested. 

The interpolation method is conceptually straightforward, and we 
had obtained an intuitive "feel" for it. The Volterra representa- 
tion was less "familiar", both in its analytic origin and in its 
association, with particular plants. 

Our commitment to the interpolation method in this instance was primarily 

to insure immediate results. We believe the Volterra series approach should 

be investigated at some future time, specifically because it has not been 

experimentally tested. 

The following summary records some primary criteria for comparison of 

the two methods, and their relative merits in each area. Since both methods 
can be generalized almost arbitrarily by inclusion of higher order terms, an 

arbitrary basis for comparison was chosen as follows: 

The representation of plants is arbitrarily truncated at the 
R = 2 kernel for the Volterra series representation, and at 
a basis containing quadratic terms for the interpolation re- 
presentation. 

Time variance is included as a linear time expansion of the 
kernels in the Volterra representation, and as a linear 
augmentation of the basis vector by a time component in the 
interpolation representation. 

Criterion 1 - ---- Domain of Representable Plants .-The overall objective of the 
DACS concept is to encompass as wide a spectrum of plants as possible in a 

single control algorithm. Thus, a primary point of comparison might be the 

relative number of plants encompassed in the respective representations. No 
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a priori preferability of representation method has been discovered by this 

criterion. Two problems render its analytic solution intractable: 

The class of non-linear plants is so broad that identification of 
a "typical" set is prevented as was done in the linear analysis. 

While some non-linear plants can be identified as exactly described 
by one or both of the methods of representation, most are not (the 
important class of piecewise defined non-linearities is not exactly 
representable by low order in either method). However, since the 
identification needs, and indeed can be, only sufficiently approximate, 
such plants can not be excluded by lacking the possibility of exact 
describability. 

Criterion 2 - Precision of Input Data.-Any comparison of the formalism of 

the interpolation method (paragraph 4.1) with that of the Volterra series 

method (Appendix G) reveals an important difference. The interpolation 

method basis vector is heavily dominated by the output state variables with 

a relatively small and highly immediate dependence on the control force. 

In contrast, the Volterra series expansions are primarily in terms of 

sequences of past values of the control force with relatively small incidence 

of the free response state variables. The commanded value of the control 

force is computer derived and is known with some precision. On the other 

hand, direct measurement of the state variables is difficult and forseeably 

loses precision with increasing order of the variable. 

These considerations suggest that the Volterra representation is 

preferable on the basis of input data precision. This conclusion must be 

regarded as highly tentative,however, for the following reasons: 

Because of the control policy, the control force sequence is not 
an independent variable. 

The Volterra representation depends on curve fitting techniques 
as functions of time. The implications of this process have not 
been experimentally investigated. 

Criterion 3 - Incorporation of Time-Variability.-From the first description 

of the Volterra representation in reference 6, time variability was 

included in the formulation. However, it was recognized that the dimension- 

ality of the set of equations requiring solution at each control step grows 
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linearly with the degree of power series utilized in the time expansions. 

Since the compution requirement grows somewhat faster than the cube of this 

dimensionality, only linear time expansion appears practical in this method. 

The interpolation method as originally conceived and described in 

reference 7 did not innately include time variability. However, it was 

subsequently incorporated in our linear nonstationary studies as a single 

linear component of the basis vector, and in provisions for periodically 

updating the state transition matrix. The computing penalty for time 

augmentation of the basis vector is slight, becoming relatively smaller as 

the dimensionality of the unaugmented basis increases. For large dimension- 

ality the fractional increase in computation required for its introduction 
is of the order of 3/m, where m is the unaugmented dimensionality. 

Updating by full inversion of the Interpolation Matrix is another 

matter, and if performed as infrequently as m2 decision intervals, can unsurp 
the computing load. Several techniques for updating by perturbation of 
the prior inverse were suggested but not tested in these investigations. If 

they can be successfully applied, updating at as few as m decision intervals 
appears possible with a fractional increase of computer load. 

The criterion of incorporating time-variability clearly favors the 

interpolation method by the above considerations. 

Criterion 4 - Data Storage and Computation Requirements.-This comparison 
can become involved in many details as is evident from the preceding dis- 

cussion of just one factor, time variability. Admitting some inexactitude 
in making this comparison (particularly in that the Volterra representation 

has never been computer programmed in any form), the following conclusions 
are general: 

For "equivalent" representation of stationary non-linear systems 
the Volterra representation requires the inversion of a smaller 
matrix of coefficients than the interpolation representation. 

The Volterra method requires a full matrix inversion at each 
decision interval. No recursive methods for alleviating this 
requirement have been identified. 
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The interpolation method for stationary plants in principle 
requires only one matrix inversion when start-up is complete. 
However, practically it may be desirable to periodically reinvert, 
if the region of sustained operation deviates markedly from the 
region of the original determination. 

All dimensionalities in the control and computation process are 
set by the assumed dimensionality of the basis vector in the 
interpolation method. This in turn is largely a function of 
the state vector dimensionallty. 

In the Volterra representation the dim-nsionality of the matrix 
inversion is largely independent of the dimensionality of the 
state vector, but critically dependent on the number of stored 
data sections. 

The Volterra representation is self updating in contrast to 
the interpolation method where an auxiliary decision to update 
is required. A corollary is that the computing rate requirement is 
constant in the Volterra method, but problem variant in the interpola- 
tion method. Another corollary is that the Volterra system is non- 
learning, while the decision to update can be generalized to selec- 
tively enter and discard data in the interpolation method. 

While the preceding summary is highly conditioned by the difficulty 

of establishing a common baseline for the two methods, it generally indicates 

the preferability of the interpolation technique according to the criterion 

of data storage and computation requirements. 

4.3 EXPERIMENTAL STUDIES 

OBJECTIVES 

This section presents the very limited experimental program and results 

obtained therefrom for non-linear stationary systems. Once again, as in the 

linear time-varying experimental investigations, the Interpolation Pre- 

diction method was used in the control policy. 

The primary objective of this experimentation was to establish the 

possible feasibility of the linear control system policy for control of 

non-linear plants. This area of investigation is of considerable interest 

if viewed from the standpoint that no plant knowledge is available. That 
is, the plant may be assumed linear and of Nth order, but in reality may 
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be non-linear of Mth order where M>N. This experimentation utilized the 

correct plant order, but assumed the plant was linear when in fact it was 

not linear. It is important to establish if system control may be accom- 

plished under such an error. This area is of prime importance also in the 

light that the plant under control may be linear over some operational 

range, and then become non-linear over another range. It is desirable that 

the control policy provide acceptable control under such conditions. 

NON-LINRAR PLANTS 

In order to accomplish the above objective two types of non-linear plants 

were used in the following experimental:,2. The first type considered was 
a plant which is continuously non-linear, and the second type considered 

was a plant which is non-linear due to state variable constraints. The 
plants used to be representative of these types of non-linearities were 

respectively the Van der Pol Equation and a third order plant with velocity 
saturation. Investigation was restricted to these two low order systems 

due to the limited nature of this experimentation. 

EXPERIMENTAL RESULTS -- 

The experimentation conducted on these plants consisted of less than 

twenty-five control simulations. No attempt was made to investigate such 

areas as need for one non-control policy force in the matrix of basis 

vectors, how and when to shift new data into this matrix, and how often 

the current response and current sensitivity should be updated. Therefore, 

all the experimentation used a 1.1 multiplying factor to keep one non- 
control policy force present in the matrix of basis vectors, shifted 
in the new data every interval, and recalculated the current sensitivity 
and current response either every or every other interval. The method of 
start-up used throughout this experimentaton is identical to that described 

in paragraph 2.2 for the linear stationary case with updating. The free 
response for the plant represented by the Van der equation 4-25 for 
e = 1.0 is presented in Figure 4-l: 
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. . c - c(l- c2) i: + c = 0 (4-25) 

Figures 4-2 and 4-3 show control performance of this plant for the 

cases where the current sensitivity and current response are recalculated 

every and every other interval respectively. It should be noted that in 

both cases the basis vector included the decision interval (T). Figures 4-4 

and 4-5 illustrate the control performance for the same conditions with 

the decision interval (T) not included in the basis vector. 

Example results obtained for the third order plant which is non-linear 
due to velocity saturation are given in Figures 4-6 and 4-7. In both of 
these cases, the current sensitivity and current response were recalculated 

every interval. The first figure corresponds to the case where the decision 

interval time (T) was included in the basis vector. 

SLJMMARY AND CONCLUSIONS 

The results obtained from both non-linear plants indicate that adequate 

control may be realized with the linear control policy. However, of con- 
siderable interest is the fact that inclusion of (T) in the basis vector 

resulted in either very poor or no control of the non-linear plants, whereas 

the control performance for the cases without (T) in the basis vector resulted 

in very adequate control performance. The poor performance encountered for 
the cases with (T) in the basis vector was not due to matrix ill conditioning. 

Rather, it seems to be simply a result of inadequate description of the 

plant. The effect is that the vector associated with time variability does 
not go to zero as is the case for linear non-time varying systems, but 
varies each time it is recalculated due to the plant being non-linear. The 
important conclusion is that control of non-linear plants with the linear 
control policy is possible, but the inclusion of (T) in the basis vector is 
to be avoided if one is not sure the plant may be adequately considered 
linear. It must be noted that the conclusions reached in the above para- 

graphs are not considered general in any sense of the word. However, they 
are considered to be somewhat meaningful with respect to low order non-linear 
plants. In order to make general conclusions about the linear control system 
capabilities and/or limitations for non-linear plants, studies of more depth 
are required on higher order plants. 
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SECTION 5 

START-UP AND LEARNING INVESTIGATIONS 

5.1 START-UP INVESTIGATION -- 

Interpolation methods applicable to the running control of linear 

stationary, linear nonstationary, and non-linear plants have been described 
respectively in paragraphs 2.1, 3.1, and 4.1. As originally conceived, 
these methods require the prior accumulation of the results of a set of 
initial control actions equal in number to the assumed dimensionality of 

the basis vector before becoming applicable. In the language of numeric 
analysis, these methods are not "self starting". 

Thus, their application requires an independent method of determining 
an initial sequence of control actions. This is termed the "start-up pro- 
cedure". 

Desirable Properties.-A desirable start-up procedure should have the fol- 
lowing properties: 

A simple computational algorithm, preferably a recursive form 

An innate tendency (which may be only approximate) to realize the 
ultimate criterion of error norm minimization 

No systematic tendency towards ill conditioning of the set of basis 
vectors being accumulated * 

Preferably an analytic basis for the method. 

*If the second and third criteria are incompatible, the third criterion 
must take precedence. The only known incompatible case in our studies is 
that of linear stationary plants in the regulator problem. Here, to the 
extent that the start-up procedure exactly realizes the second criterion, 
ill conditioning results. However, if a single control force is inexact, 
the tendency to ill conditioning is vitiated as shown in paragraph 2.2. 
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LINEAR STATIONARY PLANTS 

In the case of a linear stationary but unknown plant, a start-up 

procedure meeting the above criteria exists in the Taylor Prediction con- 

trol method described in paragraph 2.1, subject only to the condition that 

the very first control force is arbitrary. This procedure has been suc- 

cessfully demonstrated in numerous simulations, and is considered adequate 

but not necessarily optimum to the start-up of linear stationary plants. 

NON-STATIONARY AND/OR NON-LINEAR PLANTS - --- ------- --- 

No alternate elementary control method analogous to the Taylor pro- 

cedure had been previously developed for these more general plants. In our 
simulation programs an artificial method of start-up involving the applica- 

tion of a prechosen arbitrary sequence of limited control forces was used. 

This method was known to be inadequate to a practical start-up situation, 

particularly in that it is totally deficient with respect to the second 

and fourth desirable properties previously enumerated. This is a serious 
practical shortcoming, since the initial period of control is often most 

critical. Even if this effect can be discounted, the errors accumulated 

during this learning time may be difficult to remove when the ultimate 

interpolation control method becomes operative. 

Empirical Taylor Start-up.-A possibility initially entertained was the out- 

of-hand application of the Taylor start-up procedure to non-linear and/or 

nonautonomOuS plants. To the extent that the Taylor procedure had been 

successfully applied to the running control of a few non-linear and linear 

nonstationary plants, there was some empirical basis for this approach. 

Arrayed against it was the lack of an analytic foundation, with the re- 

sultant difficulty of establishing its possible utility by extensive 

simulatory experimentation. 

Empirical Growing Basis Vector Start-up. -- --- -An alternate possibility was the 

concept of control during start-up by use of a basis vector growing in 

dimension with each step. Here as sufficient data becomes available to 
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permit the solution at any given basis vector dimensionality, an inversion 

is made and interpolative control effected to that dimensionality. 

Conceptually this procedure is straightforward. Practically it ap- 
pears difficult to implement in that a computation procedure culminating in 
a full inversion must be executed at each step. The possibility of a re- 
cursive process exists partially vitiating the latter objection. However, 
there remain some conceptual problems as to which terms are to be included 
in the basis vector at each step. Stated loosely the available data for 

solution advances linearly with each step in start-up, while the basis 
vector augmentation logically occurs in blocks. 

Lacking a more closely defined method, this one would have been in- 

vestigated in further detail. Its known deficiencies are primarily pro- 
cedural as outlined above. As compared with the preferred method next to 

be discussed, it has one further limitation. At any given stage of the 

start-up, it does not utilize all available data, higher order state 

variables being reserved until a sufficient set has been fully defined. 

PSEUDOINVERSE START-UP PROCEDURE ----- 

In the closing stages of these contractual studies a start-up method 

based on the application of pseudo matrix inversion was suggested by Dr. 
John Zaborszky as a promising solution to the start-up problem. 

An extensive study of this method has been independently made by Mr. 

Charles H. Wells in his Doctorate Dissertation "Minimum Norm Control of 

Discrete Systems" (reference l), under the direction of Dr. John Zaborszky, 

Washington University, 1966. Mr. Wells has treated a number of other con- 

trol topics besides the start-up procedure subsequently outlined here. 

The remainder of this section will indicate only that form of the 

pseudoinverse matrix appropriate to start-up. Its pertinent properties 

will be described in qualitative terms and illustrated by contrived 

numeric examples. Appendix H is a more analytic but by no means rigorous 
exposition of both the pseudoinverse method and its application to 

start-up. 
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Analytic Identification of the Start-up Problem.-Before beginning the de- ---__-_-- 
scription of the pseudoinverse technique it is appropriate to.identify the 

start-up problem analytically. 

The interpolation methods of paragraphs 2.1, 3.1, and 4.1 reduce in 

principle to the multiple solution of several linear equation sets all ex- 

panded in components of the same basis vector. Thus, they can be decom- 

posed into the following generic linear equation forms *: 

x. = a 1 il$l + ai2#2 + *.* + aij$j + . . . aim$m (5-l) 

In the running state use of interpolation methods, there exists one 

such equation for each predicted output state component x.. The coeffi- 1 
cients a.. have been determined in the start-up process. All of the basis 

1.l 
vector components 0. .I except those involving the control force u are 

determined by sampling. Oversimplifying a bit, we might imagine u to also 

be determinate by some deus ex machina process. Then, each of the above 

linear equations is in principle solvable by direct substitution. 

The superficial complexity of some of the equational developments of 

the interpolation method compared with the above description arises from 

two sources: 

The composition of the entire set of equations, individually of the 
linear form stated above, into a formal system. This possibility 
exists in that all of the equations are linear forms of the same 
basis components. 

The necessity of obtaining an optimal u in conjunction with and as 
a result of the predicted output state components xi. This implicit 
computation replaces the above cited oversimpl'.fication. 

The function of the start-up procedure then reduces to the determina- 

tion of the linear coefficients a.. of each of the basis vector expansions. 
-- W%earity of plant representat&?k<sXZZGn to the classoflinear 

plants is not necessarily implied. For non-linear plants the basis vector 
components include quadratic terms in the state vector components x and in 
the control force u. i 
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Conventionally, the leading alphabetic symbols a, b, . . . are associated 

with the "knowns" or fixed parameters of a problem, and the trailing alpha- 

betic symbols x, y, z denote "unknowns". Equation 5-l has employed this 

convention as is fully appropriate in its running use. 

However, in start-up (or in other fitting and interpolative processes) 

an inversion of the identities of "knowns" and "unknowns" occurs. To 
maintain the previously cited symbolic convention a redefinition of 
parameters is necessary. Accordingly, we now associate the symbol x. with 

3 
the indeterminate coefficients hitherto designated a.., and conversely the 

iJ 
symbol aoj with particulatevalues of the basis vector components pre- 
viously designated ~j . We further remove the index i, which previously 
identified a particular linear equation set,by considering only one equa- 

tion, with it being understood that by symmetry of form results obtained 
for one such equation can be extended to the entire set under appropriate 
identification. Finally we substitute the symbol b(), for the state com- 
ponent hitherto symbolized by x.. 

1 

With all of the above redefinitions the actual linear form appropriate 

to start-up is little changed: 

b. = a()l x1 + ao2 x2 + . . . + aojxj + . . . aomxm (5-2) 

The reserved index () will be used to identify the particular determination 

or experiment of the start-up sequence, numbering sequentially from the 
first step. 

The start-up procedure is in one sense better than the running pro- 

cedure. The implicit calculation problem,which complicated the "running" 
equation solution, does not exist. It can now be reasonably assumed that at 
any given determination, k, of start-up the complete set of coefficients 

bk' akj is observable. Further, if we are willing to defer any attempt at 
solution for the unknowns x 1 ,....x., . . . x until m determinations are 

J m 
complete, the resultant equation set has a classical closed form solution. 
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But the latter restriction is precisely inappropriate to an acceptable 

solution to the startup problem as previously defined. We specifically 

wish to initiate control procedures based on some knowledge of the un- 

knowns x1 . . . x. . . . xm as early as possible, and cesainly before the m 
J 

control actions required by a classical solution. The role of the pseudo- 

inverse matrix technique in start-up is to effect some "best estimate" of 

the ultimate solution at each step of start-up. 

Introducing the usual matrix symbolism we require a solution for x in - 
the equation set: 

b=Ax _-- - - (5-3) 

where 5 has constant dimensionality (m x 1), b grows in dimension from 

(1 x 1) at the completion of the first step to (m x 1) at the end of the 
start-up procedure, and correspondingly A grows in dimensionality (and 

rank) from (1 x m) at the completion of the first start-up step to (m x m) 

at start-up completion. 

Pseudoinverse Matrix Solution. -- ----_- -Classifical linear equation theory has 

tended to ignore the solution of equation 5-3 until sufficient determina- 

tions have been made so as to render the matrix A square, and the resultant 

solution unique and exact. At this juncture it introduces a useful 

formalism, that of the inverse matrix defined by: 

g1A = I - (5-4) 

A being restricted to the class of square nonsingular matrices. Under this 

restriction the solution of equation 5-3 becomes 

x = A_-$ - (5-5) 

Recently Penrose, and Greville (references 2, 3, and 4) have considered 

the more general problem of a solution of equation 5-3 under variable 

rectangular dimensionality of A. In our application to start-up we are 

interested in the growing rank or under specified case describable by: 
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b_=iix (5-e) 

where x is an unknown (n x 1) vector, J-J is a known (m x 1) vector, A is a - 
known rectangular matrix of dimensionality (m x n), and m<n. 

It is immediately recognizable that the problem as here described is 

not really that of finding solutions for 5, since at least a single infinity 
of exact solutions exist under the above inequality. Rather the problem is 
to identify a uniquely determined and operationally useful solution from 

among all these possible solutions. 

Moore and Penrose have developed a method, that of matrix pseudoin- 

version, which solves the latter problem in a manner particularly useful 
to the present application. By analogy with equation 5-4 they define a 

pseudoinverse matrix, symbolized Af, which defines a "best approximate" 
solution 'ii in the equation. 

2 = A+b -- (5-7) 

where % is a (n x 1) vector, b retains its former identify, and A+ is a 
(n x m) matrix uniquely derivable from the direct matrix A according to: - 

A+ = &'(A A')-1 -- (5-g) 

The solution? is unique and has the useful property that of all possible 

solutions 5, its norm is minimum. 

One further pertinent property of the pseudoinverse so defined is that 

in the limit m = n: 

A+ =A -1 
(5-9) 

Recursive Calculation of the Pseudoinverse Matrix.-The operational de- --- ---- 
scription of the previous paragraph is sufficient for application of the 

pseudoinversion technique to the start-up problem. A practical refinement 
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is the application of recursive methods to its computation. The core 

computational problem occurs in the conventional (square) matrix inversion 

required by equation 5-8. The rank of this matrix grows linearly with 

each start-up step, and its direct inversion could present real-time cal- 

culation problems during start-up. 

Two recursive methods for obviating this problem have been developed, 

one by Wells and another by the authors. They are analytically developed 

in Appendix H, and illustrated by numeric example in a following portion 

of this section. 

QUALITATIVE DISCUSSION OF PSEUDOINVERSE START-UP --- ---~ 

Putting aside the mathematical detail of the pseudoinverse method, the 

core concept in its application to start-up can be crudely stated: "In the 

lack of better information, choose that potential solution which is closest 

to the origin." Certainly in the extremum of no information whatsoever, 

this is reasonable strategy. Actually, plants requiring description in 

high dimensional phase spaces begin the start-up process in a situation 

which closely approximates this extremum case. 

An additional subtlety also suggests the desirability of this 

strategy in the early stages of start-up when plant knowledge is minimal. 

The control algorithm utilizes the "best estimate" solution of the plant 

state to select the next control action. The norm minimization property 

inherent in the pseudoinverse estimation tends to initially "conservative" 

control actions, which are surely appropriate in the lack of substantive 

information. 

In "mid start-up" the controlling factor increasingly becomes the 

"potential solution" property. Each preceding determination has effectively 

reduced the dimensionality of the space of potential solutions by one. 

While the pseudoinverse procedure does not explicitly exhibit this property, 

it appears tacitly in successive constraint of the locus of potential 

solutions. 
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The final control action of the start-up process renders the solution 
fully determinate. The important property here is that the pseudoinverse 

algorithm produces the "exact" inverse in this limiting case. 

GRAPHIC-NUMERIC EXAMPLE OF PSEUDOINVERSE TECHNIQUES _------ 

The following contrived examples illustrate the principles and methods 

previously discussed. They are three dimensional to permit hand calcula- 

tion and reader verification, and for graphical visualization. While the 

solutions coverge nicely, the parameters were not chosen for that purpose. 

Rather, one of our graphically oriented engineers was given the rudiments 

of the pseudoinverse method and asked to make sketches illustrating it. 

The actual equational parameters were post facto estimated from his sketches 
(Figures 5-1, 5-2, and 5-3). 

SOLUTION 
(-1.058, -0.706, -0.706) 

FIGURE 5-1 PSEUDOINVRRSE SOLUTION OF SINGLE EQUATION 
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SOLUTION x3 
(-0.706, -1.058, 0.706) 

PLANE II 

FIGURE 5-2 PSEUDOINVERSE SOLUTION OF SINGLE EQUATION 

x3 

INTERSECTION 

SOLUTION 

FIGURE 5-3 PSEUDOINVERSE SOLUTION OF TWO EQUATIONS 

196 



Example l.- Consider an initial determination: 

bl= 6 = allxl + a12x2 + a13x3 = - 3x1 - 2x2 - 2x3 (5-10) 

In accordance with previous discussions in a start-up procedure the numeric 
6 in the left hand side of the above equation is identifiable with the 

value of sOme measured output variable at the end of the first decision 
interval. Similarly, the three numerics of the right hand side (-3, -2, 
-2) are identifiable with known initial conditions and/or control forces 

applied at the start of the first decision interval. Equation 5-10 is 
graphed as plane I in Figure 5-1. 

We now obtain a "best estimate" of the variables (x 1, x2' x3) by the 
pseudoinverse technique as follows: 

ii+ = A' (A A') -- 
-1 f] (c-3 -2 -23 [z] )-I 

= 

Note that a unique solution has been obtained, and is indeed the point in 

Plane I lying on that normal to the plane passing through the origin. 

The norm of x is minimal and of specific value: 
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Example 2.-Alternately it could have been possible at the initial determina- 

tion to have obtained a set of measurements defining the plane: 

6 = -2~~ - 3x2 + 2x3 (5-11) 

This locus is illustrated in Figure 5-2 as plane 11. 

Assuming that this determination was the initial one and the sole 

available data, its pseudoinverse solution could be calculated as in the 

preceding example: 

1 
IIX II2 - = 2.116 

X~ZXL-IXL-I S.-Suppose now that the initial determination is that of Example 1 - 
ind that the determination of Example 2 is considered a subsequent second 
ietermination on the same system. For this case direct application of the 

lseudoinverse technique gives: 

-35 -10 

1 [ -10 -35 

=225 -50 50 1 
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llizl12 = 2.88 

The graphical interpretation of this best approximate solution is given 

in Figure 5-3. The zero x3 coordinate is an accident of the particular 

problem. 

We can also here illustrate computation of the pseudoinverse matrix by 

both of the recursivealgoritbms. 

By Wells' first formula for recursion: 

and by definition, a -k ' is the row added in the current determination, so 

that: 

a+’ = -2 -3 C 21 

by Wells' second formula: 

& = I C -2 -3 2 

- 

1 
0 0 1 

010 -$ 

-0 0 1 J 

1+ <k= 17 l c-10 -35 50 

[ 

-3 
-2 

-2 
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Back substituting this result into Wells' first formula: 

-35 -10 
1 

= -- 
225 

-10 -35 [ -50 50 1 
which is identical with the pseudoinverse previously obtained by direct 

substitution. While the recursion method is computatially disadvantageous 

in this primitive example, the converse is true as the rank increases 

Finally, we demonstrate the bordering recursion as follows: 

From Example 1: 

bk 
= c-3 -2 -23 !!k 

-1 1 
= 17 

and by definition: 

Sk 
' = C -2 -3 21 

Thus: 
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ak = c-2 -3 2-J 

r 
1 -2 

-3 

2  L -2 

-3 
2  

225  1  1  - - 17  17  +17 L-3 -2 -3 $3  -2 

$  -2][$-2 = -2,[i;]$ - - 

-_-------------------- 

-r ;- - - - - - -2]rg - - - 

I 
[-2 -3 21  

I 
- I 1  I 

-35 -10 
1  

= ET: [ -10 -35 -50 50  1 
which is again in agreement  with the directly calculated result. 

Example 4.-Consider that the two initial test responses of Example 3  are 
now augmented by a  third sequential determination: 

7  = -3x1 - 2x2 + 2x3 (5-12) 

The  equation set is now classifically complete and  has a  solution in the 
form: 

-1 
X - =A b  

which under  numeric substitution is: 

x1 [1 x2 = 

x3 

-3 -2 -2 

-2-3 2  

-3-2 2  

1 -' [I 6 

6  

7  

F irst forming the "classical" inverse: 

-2 8  -10 

-2 -12 10  

-5 0  5  
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The resultant solution is: 

-[ 

x1 
x = x2 

"3 

with norm: 

I!Xll 2 

I [ 
-1.7 

= -0.7 

0.25 

= 3.44 

We now demonstrate that the pseudoinverse procedure yields the classical 

inverse in this fully determined case. 

+ 
A = A' (A A') -' -- 

[ 

-3 -2 -3 
+ 

A = -2 -3 -2 

-2 2 2 

[ -2 -2 -5 -12 0 8 -10 10 5 1 
The desirability of this result over classical inversion methods is that it 

can be approached recursively from the successive underspecified solutions 

during start-up. 

. 
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5.2 T-h LEARNING INVESTIGATION 

In all of the procedures and results previously presented there runs 
a common thread, the primacy of the T-h control system parameters. To the 
extent that adaptivity has been demonstrated, it resides in the existence 

of a region of the T-h space where stable and effective control of a diver- 

sity of plants can be accomplished. For linear stationary plants, the 
extent of this region can be predicted by the Liapunov stability criterion. 
For other plant classes it must be determined by experiment. 

In considering the application of formal -learning techniques to this 
control, initial concentration on the T-h parameters seems natural. At 
the period when investigation of learning began, two problems requiring 

the determination of preferential T-h values were apparent from prior simu- 

latory studies: 

For classes of plants where an appreciable region of the T-h 
plane was known to provide stable control, what specific T-h 
point was "optimal"? 

For those plants (largely high order) where any given plant had 
only a few isolated points of stability, how could such points 
be identified and utilized during the start-up procedure? 

The following theoretical study deals exclusively with the first of 
these problems for several reasons: 

Since learning processes in the unknown plant context require ex- 
perimentation with the actual plant control, the existence of a 
stability region in the first problem permits some freedom of 
action without catastrophic consequence. 

The second problem is patently more formidable. Also, as stated 
it must be solved in the start-up period. While start-up methods 
as described in Paragraph 5.1 had been devised, they had not been 
experimentally tested. Thus, a desirable background of prag- 
matic experience was lacking. 

A RESTRICTED T-h LEARNING PROCEDURE 

It is initially assumed that the control process has been successfully 

started and is operating in a stable fashion. The initial set of T-h values 
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has been chosen from a boundary for the generic class of plants similar to 

and presumably containing the particular plant under control. 

It is now proposed to "improve" the control by adjustment of T, h, or 

both under a learning procedure. This objective first requires the identi- 

fication of a measurable and meaningful criterion of "improved" performance. 

The control policy is to reduce the norm of the difference between the ac- 

tual state x(t) and the desired state r(t) on an interval-to-interval basis. 

Assuming this aim as realistic, a logical expression for the quality of 

control is the actually achieved norm averaged over a representative inter- 

val. 

Averaged Norm Criterion (l).-Thus, a possible criterion is: 

11 = 
s 

II"( t) -L(t)112dt or 
c II" -r II2 

8 8 
where 8 is an interval of representative length. 

(5-13) 

These forms differ only in whether or not the sampling period is sufficiently 

short to approach the continuum. 

Control would be considered improved if under a permutation of T, h, 

or both, 11 is reduced. However, for this use 11 must be uniquely repre- 

sentative of the control policy and its parameters, rather than of changes 

in the desired input ;. A method of removing the undesired sensitivity 

to r is apparent only in a few special cases. The most practical such c.ase 

is a randomly variant ; applied to a linearly invariant system. Here 11 

should be proportional to the mean square r provided the integration in- - 
terval 0 is long enough, and provided the power spectra of r over each of 

the compared intervals are constant to the extent of scalar multiplication. 

Maximal Excursion Criterion (2).-An alternate criterion, that of maximal 

excursion, might be preferable in certain practical applications. 

12 = max gX('t) - r<t)ll o<t <e (5-14) 
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However, here the conditions for the statistical validity of r independence 

are more stringent than those stated for the previous case. 

Accordingly, it is concluded that T-h parameter optimization by the 

use of either of the preceding criteria: 

Is not possible of implementation in the generality of plant 
treatment which has characterized the other studies 

Can be applied only with caution in those few cases where a priori 
applicability can be inferred. Particularly, it is necessary to 
establish statistical regularity of the input function in terms 
of an integration interval 8 

Plant Model Criteria (3) and (4).-Hitherto these studies have deliberately 

excluded any use of any modeling concept. The rationale was simply that a 

model could not be a priori defined for an unknown plant. Postulation of 

some sort of plant model (preferably generic by plant class rather than 

specific to a given plant) is here treated for the following reasons: 

To the extent that a plant model can be considered as a filter, 
its output has greater statistical regularity than its input. 
Viewed in the frequency domain the power spectrum of its output 
is regularized. 

If the model is reasonably representative of the plant (class), 
it introduces the element of physical realizability into its out- 
put. 

The first property alleviates (but does not totally eliminate) the 

problem of establishing statistical regularity of two sections of the ref- 

erence function. Accordingly, let us modify the performance criteria as 
follows (3), (4): 

I3 = s e pw -+>112 dt (5-15) 

I4 = max Il$t> -=<t>ll o<t< e (5-16) 

where z(t) is the output of the model which is fed the same desired state 

as the system proper. 
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Note that prefiltering of the input to the actual control system is not 

implied, and that the model does nqt enter the control action computation 

per se. Its only function is in the search for improved control parameters 

T and h, which is a parallel function to the actual control. Note also 

that if the model is reduced to 'the identity operator, I1 = I3 and I2 = 14. 

The parameter optimization procedure here postulated then is the evalu- 

ation of performance indices I 3 or I 4 over several successive equal dura- 

tion periods, with concomitant perturbation of the actual control parameters 

T, h, or both. A subsequent search technique identifies the set producing 

the minimum values of the performance index I3 or 14. This procedure differs 

from a more common model exploratory technique, in that the experimentation 

is performed on the plant control, not on model parameters. Again the 

assumption of an unknown plant prohibits any close specification of the 

model, and its role is that of a filter in the parameter optimization loop 

and not as that of a reference standard. 

Determination of the Integration Interval 8 .-The first parameter to be 

determined in this approach is the value of a "sufficiently long" integral 

of integration 8. For the random stationary input case, the input power 

spectral density can be computed from sampled measurements or may be a priori 

known. An arbitrary cutoff frequency, characterized by the property that 

some large fraction of the input power lies at or below it, can be designated 

the cutoff frequency fc. Then for 0>1/2f 
C’ 

all correlations introduced 

by band limiting have been included in the sample set, and the ensemble of 

sample functions has the same statistical expectations as the parent 

function. 

A Search Procedure.-Let it now be assumed that two sections of equal length 

9, but with perturbation between sections of one of the control parameters, 

say h, have been measured. The desired value z(t) is assumed to be random 

stationary over the interval of integration 8 in each case. Eowever, it may 

happen that the average value of IIZ(t)ll is different between the two 

sections. Since a linear plant and control policy has been assumed in this 

study, this variation appears as a linear scaling factor in the performance 

index I 3' Thus: 
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13 (hl) = 
s 

Ilz(t,hl) - Z(t)H2dt 
0 

'3 (h2) = t s 
Ik(t',h2> - z(t')li2dt' 

e 
where the introduction of the scaling factor 

1-I = Sl(z(t')Ildt'/~l~(t)lldt 
El 8 

(5-17) 

(5-18) 

(5-19) 

removes this amplitude scaling effect and renders the computed values of 

the performance index compatible. 

Once a sufficient number of such values is available a search for the 
minimum I 3 can be instituted by conventional methods. In such numerical 

search techniques, particularly for steepest descent or Newton-Raphson type 
methods, the components of the gradient can be approximated from the pre- 

ceding by: 

aI 3 
ah= 

13(hl> - I3 (h2) 

hl - h2 

(5-20) 

Having locally optimized h, we can now proceed in a perfectly analogous 
way to the local optimization of T. A number of conventional methods of 

organizing the search procedure exist. 

Evaluation of Method .-The advantages of this method include: 

It is straightforward in concept and relatively simple of imple- 
mentation. 

Since the search for parameter optimization is conducted with the 
plant control per se, any optimization achieved has been directly 
verified before final commitment. 

Its disadvantages include: 

Since experimentation is conducted on-line, performance will be 
degraded during portions of the search. 

A model concept has been introduced, albeit in an indirect and 
inexact manner. Particularly, it is not apparent that a "general- 
ized" model for a class of plants as assumed here can indeed be 
synthesized. 
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It has been necessary to restrict the plant input to a class of 
functi0n.s exhibiting statistical regularity. In common with other 
statistical design methods, such properties are more characteris- 
tic of the ensemble of a large set of "similar" plants or of a 
long time history of control actions of a given plant, than of the 
limited samples of here-and-now control of a single system. 

The search time may prove excessive. While the estimated time of 
a given determination appears reasonable, the requisite number of 
determinations has not been estimated. 

A GENERALIZED T-h LEARNING PROCEDURE 

The limitations of the previously described method arise largely from 

the assumption that the plant is totally unknown at the beginning of the 

parameter optimization procedure. The immediate results of this assump- 

tion are the restriction to linear plants and to random stationary input 

sequences. 

The situation of complete lack of plant knowledge exists only at 

start-up under most of the control methods investigated. Only the pure 

Taylor control method does not learn in the control process. The mixed 

predictive method acquires an estimate of the plant forced response as 

control proceeds. The interpolation based methods build up knowledge of 

both the free and forced plant responses in the form of transition 

matrices. 

The following learning method is based on the utilization of the 

closed loop transition equation. As here outlined it is based on the 

assumptions of: 

Linear stationary plants 

Parameter adjustment to a performance index based on optimality 
to solution of a standardized regulator problem. 

These assumptions are arbitrary for analytical convenience and by no means 

necessary. 
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For clarity of presentation, the method is presented in outline form 

as follows: 

1. The performance index is taken to be: 

I4 = x(nT) -=(nT) 11 2 (5-21) 

By choice of optimation to the regulator problem and removal of 
the model reference, the performance index reduces to: 

I4 = Cl1 x(nT) 11 2 
e 

(5-22) 

2. Let the actual control system be started with the initial par- 
ameter values T hl chosen from a region of known stability for 
the generic plai; class. At the conclusion of its start-up pro- 
cedure the closed loop state transition matrix 
been determined satisfying: 

2 CT13 hl) has 

2 [W+UT] = !E(Tl, hl.> $NT) (5-23) 

Note that for fixed Tl the matrix @(T h ) is a specific 
known function of hl. By local linearizA;ioA of the analytic 
form of g (Tl, hl) determine an expression for 2 (Tl, hl+Ah). 

3. Utilize this expression in conjunction with equations 5-21 and 
5-23 to evaluate the performance index I4 for values of (hl +Ah) 
within the stability bounds of h. Two alternate possibilities 
exist for the optimization of h. The dependence of !&(Tl, hl +Ah) 
on h may be such as to permit analytic minization of I4 with re- 
spect to h. If so, a preferential value of (hl +Ah) designated 
h2 can be computed in closed form. Lacking this a limited search 
in the set of computed values \k(Tl, hl +Ah), \k(Tl, hl +Ah’), 
!Wl, hl +Ah”) . . . can be performed to establish the value of 
h2’ 

Note that the process of determining h2 is an off-line computa- 
tion, and that during its execution the system continues to op- 
erate with the initial parameters T and h . Further note that 
while some complexity of computatioA may bi involved, the process 
occurs after start-up, and in the running region where other 
computing requirements are minimal. 

4. Introduce the locally optimal value of h2 into the control pro- 
cess, which now operates with parameters T 1' h2' Note that the 
approximate closed loop state transiti.on matrix g(Tl, h2) is 
immediately available, since it has been calculated in the process 
of optimizing h. 
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5. Minimization of the performance index 14 with respect to T at 
constant h2 is next to be performed. Some possibility of analy- 
tically exhibiting the T dependence of g(Tl+AT, h2) in a man- 
ner analogous to that invoked for h exists in the linear plant 
case. However, the dependence is assuredly more complicated. 
Here minimization by a search technique among 14 computed values 
of argument 

%(TLf AT, h2>, \k(T1+ AT’, h2>, WI+ AT”, h2) 

. . . is assumed. 
minimum I 

Designate the value of (Tl+AT) producing the 

4 as T 2' 

6. Introduce into the control the optimalized values (T2, h ). 
s 

Here 
stability may be a somewhat more vexing problem since CT29 h2> 
is available only in interpolated form from the minimization 
search. Consequently if T2 differs appreciably from Tl, it may 
be necessary to approach it by small steps. 

7. This process is in principle iterative from step 3. 

Evaluation Of Method.-A first conclusion is that the generalized T-h learn- 

ing procedure is preferable to the restricted T-h learning procedure first 

described on several counts: 

It permits off-line optimization of system parameters without 
interference with the control process. 

It removes the restriction of inputs which limited the applica- 
bility of the first described procedure. 

It utilizes available plant information, and dispenses with the 
modeling concept. 

On the converse side the following limitations are recognized: 

It has eliminated the undesired sensitivity of the performance 
index to the input function by substitution of optimization to 
a standardized input function. The permissable degree of gen- 
eralization of this function beyond the regulator assumed in 
the preceding notes has not been established. 

Neither has the detailed equational description of the perfor- 
mance index to the T-h parameters been made. Isolation of the. 
h parameter sensitivity for linear systems can be predicted with 
some confidence. The T parameter determination and the possibil- 
ity of extension to non-linear systems require investigation. 
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SECTIO N  6 

RECOMMENDATIONS FOR FURTHER STUDY 

The theoretical and experimental research presented in this report 

has investigated in var ious depths of detail Emerson's control system perform- 

ance for linear and non-linear time and nontime-varying systems. Through- 

out the course of these investigations certain areas noteworthy of further 

study have been recognized, and as such are summarized in this section. 

The areas of research considered to be the most desirable to study due to 

importance and/or productiv ity  at modest cost are referred to as Primary 

Recommendations. Those areas of research, which to a large extent require 

rather intensive analytical work and/or programming, are denoted as 

Secondary Recommendations. 

PRIMARY RECOMMENDATIONS -- - - -  - - - -  

The primary recommendations are of considerable interest as well as 

importance, and as such are considered first. The three primary recom- 

mendations are: 

Extension of Experimental Studies on linear time-varying and nontime- 
vary ing plants of higher order. 

Extension of Experimental Studies on non-linear time-varying and 
nontime-varying plants. 

Analytical study to develop the Volterra ser ies (R=l)  control equa- 
tions applicable to linear time-varying and nontime-varying plants. 

Each of these areas is  considered in depth in the following paragraphs. 

The extention of the experimental studies on linear time-varying plants 

to higher order is  a logical step in determining an accurate performance 

assessment of our control system. Since the previous control experimenta- 

tion on time-varying systems was restricted to second and third order 
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plants having only one parameter vary as a function of time, the results 

were of use only for very limited conclusions. The main conclusion is that 

the Digital Adaptive Control System did show promising control capability 

for low order time-varying plants. Certain problem areas such as ill 

conditioning of the matrix of basis vectors were discovered, which need 

further analytical as well as experimental study. This particular problem 

was noted for nontime-varying as well as time-varying systems, and is 

a numerical problem directly associated with the Interpolation Prediction 
method. The area of research covered by the above discussion is rather 

broad, but each facet is of practical importance with regard to control 

system improvement for linear time-varying and nontime-varying systems. The 

experimental extensions will greatly utilize the existent analysis methods 

and computer programs. 

The second recommendation for extension of experimental studies on 

non-linear time-varying and nontime-varying plants is of prime interest 

and importance. In the previous analytical studies two alternate control 

system approaches were developed, and the Interpolation Prediction method 
selected as the most desirable to program for experimental study. The 
only non-linear plant control experimentation during the previous research 
was conducted to determine if such plants could be adequately controlled 

with the linear control policy. The results of this limited experimentation 

were very good, and so investigation of control with the non-linear policy 
is recommended. As in the previous recommendation, analysis methods and 
computer programs already developed will be utilized to a great extent. 

The last primary recommendation is to develop the Volterra series 

(R=l) control .equations applicable to linear time-varying and nontime- 

varying plants. This requires an analytical study of a somewhat limited 

depth, since much of the work done in the R = 2 case will be of considerable 
help. The R = 1 equation development is of prime interest, since it will 
allow an alternate control approach for linear plants. Thus, a comparison, 
such as was done for the R = 2 Volterra series and the Interpolation 
methods, may be completed for the alternate linear plant control policies. 
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SECONDARY RECOMMENDATIONS 

The following two recommendations are of great importance, and are 

only considered as secondary due to the large analytical and experimental 

work required for any depth of investigation: 

Investigation of possible start-up procedures, such as the method 
presented in Section 5. 

Investigation of possible learning or pattern recognition with regard 
to obtaining the T - h parameters for best possible control perform- 
ance. This area of research was also discussed in Section 5. 

Both of these areas require research which should and must be done before 

possible application of Emerson's control system may be meaningfully pur- 

sued. However, such investigations may be considered at a later date 

without causing serious effect on the primary recommendation areas of 

research. 
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APPENDIX A 

DETAILED STUDY OF THE STATE VECTOR DISCONTINUITY PROBLEM 

A.1 DERIVATION OF THE DISCRETE STATE EQUATION OF LINEAR STATIONARY PLANTS --- .- --- L 
IN TERMS OF t = kti INITIAL CONDITIONS 

The mathematical description of the plant is expressed by the single 

equation 

i(t) = H x(t) + G u(t) (A-1) -- -- 

where If and G are constant matrices. The vector x(t) is the plant state 

variable identified on a one to one basis with the plant output, c(t), and 
the first (n-l) derivatives of c(t). The quantity u(t) is the vector input 

to the plant identified on a one to one basis with the input, m(t), and 

the first m derivatives of m(t). A more complete discussion of this 

equation is presented in Section 2.1 of the text. 

The solution of equation A-l proceeds by considering the solution of 

the free or homogeneous equation 

k(t) = H x(t) -- (A- 2) 

By analogy with the corresponding scalar equation, it is possible to 

show the solution of A-2 is given by 

x(t) = e W-to) 
X(to) (A-3) 

where 
00 *- 

eHt= 
c 

& t1 
T 1. 

i=O 

(A-4) 

and Ho = &. 
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The series of equation A-4 can be shown to converge uniformly in any 

finite interval on the time axis and the sum function is a continuous 

function of t for all finite t. Equation A-3 is conveniently written in 

the form 

z&l = g&to) gt,> (A-5) 

where F(t-to) = e- H&to) is referred to as the transition matrix of the 
plant. 

The solution to the forced (nonhomogeneous) equation is obtained by 

employing the variation of parameters technique and assuming the solution 

of equation A-l is of the form 

+> = gt-to) w(t) (A-6) 

Differentiating equation A-6 and solving for w(t) by comparison with 

equation A-l simplifies to 

t 
+I = I- & vto) G ~(7) d7 + c (A-7) 

where 2 is the constant of integration. The existance of A-7 requires 

that F(t-to) possess an inverse for all t. The non-singular property of 

E(t-to) follows from the fact that 

1 e ii t I= e t trace X 
(A-8) 

Substituting the solution for w(t) into equation A-6 and malting use 

of the fact that at t=t o, F(t-to) = L and 2 = x(t,) yields as the solution 

of equation A-l. t 

x(t) = +-to1 x0,> + 
f 

F(t-7) G U(T) dr -- (A-9) 

tO 

Equation A-9 is the general solution of the first order vector 

differential equation of the plant. 

To place the solution of equation A-l in a discrete form, consider 

x(t,) to be the state of the plant at some time t = IcT where T is the 
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length of the sampling or decision interval in seconds. The solution for 

the plant state at the next sampling instant is given by 

(k+l)T 

x((k+l)T) = F(T) x(kT) + 
f 

E:(t- T) G U(T) dr (A-10) we 
kT 

Considering the plant input, m(t), to be constant over each sampling 

interval and defining the solution of the plant differential equation over 

the open interval kT<t < (k+l)T yields 

x((k+l)T-) = F(T) x(kT+) -I- 
(k+l)T- 

f 
g(("l)T- - 7.) G u(r) dr (A-11) _ _ 

kT+ 
where 

"' (t) = u,, 0 . . . 0 kT+r t<(k+l)T- (A-12) 

Defining the solution equation A-11 over the open interval avoids the 

problem associated with discontinuities in the input, m(t), at sampling 

instants. 

The form of the constant matrix 5 is given in Section 2.1 and is 

repeated here for convenience. 

‘= [BoBy:r-. . Bm] 
The product of c with u(t) is a column matrix of the form 

[52(t)]' = 0 . . 0 Bouk 
I 

(A-13) 

(A-14) 

Let the last column of F(t) be defined as f(t). Making use of this 
definition and equations A-12 and A-14 permits equation A-11 to be written 
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in the form 

(k+l)T- 

E(fk+l)T-) = E(T) x(kT+) j- ukBo f 
f((k+l)T- -7) d7 

kT+ 
(A-15) 

For a constant sampling rate (T constant), F(t) is a constant matrix 

and the integral on the right hand side of equation A-15 is a constant 

vector. An abbreviated notation for equation A-15 is 

x((k+l)T-) = E x(kT+) + 5 uk (~-16) 

where (k+l)T- 

a=B 
0 s 

_f((k+l)T- - T) dT 

kT+ 

(A-17) 

and the evaluation of F(t) and equation A-17 for the length of the 

sampling interval, T, is tacitly implied. 

Equation A-16 is a discrete state equation for linear, stationary 

plants and is the equation stated in the text (equation 2-12 of Section 2.1) 

as being stated in terms of t = kT+ initial conditions. It is completely 

general in that the interval kT+L t _< (k+l)T- may occur anywhere in the 

control time history, and the plant transfer function may contain zeroes 

as well as poles. 

A.2 THE DISCONTINUITY VECTOR 

The input to the plant is a sequence of piecewise constant control 

forces calculated by the control policy. The nature of the control action 

is such that the control force is constant over any one sampling or 

decision interval, but not continuous from interval to interval. The 

effect of the discontinuity in the control input at sampling instants is 

to cause corresponding discontinuities in a number of the state variable 

components which depends upon the plant configuration. The relationship be- 
tween the values of the state variable components before and after the input 
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discontinuity is expressible in the form 

x(kT+) = x(kT-) + zd ('Jk - 'Jkl) (A-18) 

where the discontinuity vector, x -d' is normalized to a unit magnitude 

discontinuity. The principle of superposition allows the evaluation of 

the discontinuity vector, xd, by considering x(kT-) to be the null vector 

0, and the discontinuity to be unity in magnitude. Under these 

conditions 

X&T+) = zd (A-19) 

In order to determine the relationship between the plant configuration 
and the discontinuity vector, x+, a transfer function approach is employed. 

Assuming all initial conditions to be zero, a unit step function is 

applied to the plant and the Laplace transform of the state vector (the 

plant output and its first (n-l) derivatives) is obtained. By means of 

the initial value theorem of Laplace transform theory, the initial 

conditions are evaluated. These initial conditions constitute the 

discontinuity vector xd. 

In order to be more quantitative, 
function 

consider the general transfer 

G(s) = = No D(s) 

i=O 

where A = 1 and at least B is non-zero. n 0 

The discontinuity vector is defined by 

x&T+> - x(kT-) 

%I = Uk - Uk 1 
or 

(A-20) 

(A-21) 
s= dl d2 . . . dn 
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where, under the conditions outlined above 

&-j’ = 2’ co+> = cco+> go+> . . . v(o+> 
I I 

(A-22) 

The Laplace transform of the plant output due to a unit step is given 

bY 

No 
'(') = SD(S) 

(A-23) 

The first component, dl, of the discontinuity vector is given by 

dl = c(O+) = lim (SC(S)) = 0 (A-24) 
s-co 

Thus, the output of the plant is continuous regardless of the plant 

configuration. 

A convenient way of writing the solution for the zd vector is in the 

form 

d2 = C(O+) = lim (s2CW) = Bnel 
S-K0 

d3 = E(O+) = lim s(s2C(s> - d2) = Bnm2 - An 1 d2 
S-r03 

(A-25) 

(~-26) 

Similarly, the general term, di, may be expressed in the form 

i 
di = Bn i+l - c A d (A-27) 

n-i+j j 
j=l 

1 0 0 . . . 0 0 

A n-l 1 0 . . . 0 0 

A A n-2 n-l l...O 0 

. . . . . . . . 

Al A2 A3 . . . Anml 1 
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dl 

d2 
X 

d3 

. 

dn . 

0 

B n-l 
= B n-2 

. 

Bl - 

(~-28) 



It is important to note that as the degree of the numerator 

polynomial of the transfer function (the number of zeroes) lessens, 

more of the dirs are zero. The nature of the discontinuity vector is 

such that the highest order state variable components are the ones in 
which the discontinuities occur. If the transfer function contains no 

zeroes the only non-zero coefficient is B 
0 

and the discontinuity vector, 

Xd' is the null vector 0. The complete state vector will then be 

continuous. 

A.3 DERIVATION OF THE D-ISCRETE STATE EQIJATION QF I@E>AR STATIONARY PLANTS _ _ _ 
IN TERMS OF t = kT" INITIAL CONDITIONS 

Figure A-l defines the time instants kT-, kT" and kT+. The relationship 

between the state vector x(kT') and x(kT+) may be expressed in terms of the 

discontinuity vector derived in Section A.2 of this appendix. 

x(kT+) = x(kT') + xd uk (A-29) 

Similarly 

x((k+l)T-) = c((k+l)T"> + zd uk (A-30) 

Substituting equations A-29 and A-30 into the state equation derived 
in Section A.1 (equation A-16) yields 

~((k+l)T') + zd uk = 2 ( x(kTO) + zd uk) + 2 uk 
(A-31) 

collecting terms 

x((k+l)T') = z x(kT') + 1 uk (A-32) 

X=a+Fhd-Xd (A-33) 

Equation A-32 is the general form of the state equation in terms of 

t = kT" initial conditions. 
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kT-w 

"k 

- kT+ 

"k+l 

kP (k+l)TO 

FIGURE A-l A SEQUENCE OF CONTROL FORCES ILLUSTRATING 
THE DEFINITION OF kT" 
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A.4 SOME MISCELLANEOUS RELATIONSHIPS 
The equations of this section are a collection of useful relationships 

which are used in various parts of the textand other appendices. 

1. It was 'shown in Section A.2 that when a plant transfer function 

contains no zeroes the discontinuity vector, zd, becomes the null vector 

4. Equation A-18 of Section A.2 therefore reduces to 

x(kT-) = x(kT+) (A-34) 

which means the state vector x(t) is continuous even though the input 

contains discontinuities. State equations A-16 and A-32 become identical 

as from equation A-33 when x = 0 -d 

&=a (A-35) 

2. Two alternate expressions for the state equation A-16 in terms of 

kT- initial conditions may be derived by substituting equation A-18 into 

equation A-16 

x((k+l)T-) = x [x(kT-) + zd ("k- 9-l)] + 2 "k (A-36) 

The first of these expressions is 

r((k+l)T-) = F x(kT-) + bl uk + b2 ukml -- 

where 

b2 = - -d -Fx 

The second expression is only a slight rearrangement of the first 

(A-37) 

z((k+l)T-) = z ~f(kT-) + 2 uk + C (uk - Uk-l) (A-39) 
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where 

c=Fxd - -- (A-40) 

Comparing equations A-38 and A-40 the following equalities exist 

bl=a+c 

b2 = - c 
(A-41) 

Comparing equation A-38 with equation A-33 yields an alternate 

expression for X 

x=bl+F 
-1 

b2 (A-42) 

A.5 DERIVATION OF THE INTERPOLATION ESTIMATE OF THE DISCRETE STATE 

EQUATION FOR LINEAR TIME VARYING PLANTS IN TERMS OF t - kT" INITIAL 

CONDITIONS 

Equation 3-19 of Section 3.1 is the interpolation estimate of the 

discrete state equation in terms of t = kT- initial conditions. 

:((k+l)T-) = gl x&T-) + El uk + sf2 ulcml + g3 T (A-43) 

If for some interval kT I t < (k+l)T the control force uk is zero, then 

z((k+l)T-) = g((k+l)T') = &$ z(kT-) -:- z2 ulcWl + f3 T (A-44) 

Since the change in x(t) over the interval kT" 5 t 5 (k+l)T' is due 

entirely to the free response and the time variation of the plant, 

z((k+l)T') = sl x(kTO) + g3 T (A-45) 

Substituting equation A-45 into A-44 and rearranging terms yields 

x(kT') = $lcT-) + 2;' 92 Uk-1 (A-46) 
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A similar relationship may be written for x((k+l)T') and x((k+l)T-) 

z((k+l)TO) = z((k+l)T-) + ?;l E2 uk 

Substituting equations A-46 and A-47 into equation A-43 

z((k+l)TO) -";l 'p2 uk = 2, [x(kT') - 2;' z2 uk l] 

+'p, Uk +??2 l-$-l+?3 T 

Rearranging equation A-48 and making the definition 

Ye =q +$(p:! 

yields 

x((k+l)T”) = zl x&To> + ‘Oe ulc + (p3 T 

(A-47) 

(A-48) 

(A-49) 

(A-50) 

Equation A-50 exhibits the desired relationship. 
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APPENDIX B 

DERIVATION OF GENERAL INTERPOLATION WORKING EQUATIONS 

Gorman and Zaborszky. (reference 1) have demonstrated the usefulness 

of interpolation as a particularly simple way of selecting a continuous 

functional, qu, J-J(t), that coincides with the system functional at 

measured data points when no information is available regarding the dynam- 

ic relations of the plant. The data points take the form of a set of 

measured values for the system input u m' initial conditions 7 
-m' and the 

system output xm, m=l, 2, . ..M. This set of measured items may include a 

variety of quantities on an optional basis. A sample list using m for the 

arbitrary past decision time could consist of: 

(4 urn the control force during mT<t<(m+l)T 

(b) um-1 the control force during (m-l)T<t<mT 

(c) k=n-m the time distance from the present. Since the time inter- 

val is fixed, the time variation of the plant can be described 

by one parameter for each time interval. 

Cd) E .o=8 (i-1) (mTo) m e initial conditions, i.e. the initial plant 
ml 

state. 

e m j 
Any arbitrary conditions existing at t=mT which are known to 

uniquely influence the performance. For instance, dynamic pres- 

sure, Mach number, altitudes, may be used in this manner. 

Ostfeld (reference 2) has considered in more detail the particular 

type of interpolation procedure which applies to the type of control function 

encountered in this report. Because the control inputs are constant over 

decision intervals T seconds in length, it is convenient to have the set 

of measured values take the form of the initial conditions 7 m at the 
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beginning of M decision intervals, the control forces, um (constants), 

during the intervals and the outputs xm at the end of the intervals. 

The method of solution for the approximating functional takes the 
form of solving the determinant equation: 

where x 1' X2' *-a, "M are the measured outputs of the plant,&(u,z) is a 

vector of M linearly independent analytic base functionals b, 11, and gl, 

g2' .'., & are this vector (basis vector) evaluated at the measured data 

points, ulfll, ~$2, . . . . u&. 

Equation B-l may be expanded in terms of minors of the first column, 

yielding the following solution for ?(u,l) 

03- 2) 

where x is a vector consisting of the measured system output states: D- 

$1 = x1 x2 . . . “M 
1 I 

(B-3) 

and 2 is an M x M matrix with elements &#I~,-~ 9 ) and will be referred to 

as the matrix of basis vectors: i.e. 

g’ = 
[ 91 (ul a1 1 ih2(U2d2) . . . &(~‘JM) 1 (B-4) 
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Due to the discrete nature of the interpolation equation it is convenient 

and simple to write equation B-2 in the following form: 

z((n+l)T) = $' 2 -l p(u).& (B-5) 

As noted before, ? is the approximated value of the output at (n+l)T due 

to initial conditions & at t=nT and a control force u n applied over the 

decision interval nT<t<(n+l)T. 

Equation B-5 may be generalized to estimate the state x((n+l)T)rather 

than just the output. This is accomplished by simply noting that the 

xm(um,g) measured values in equation B-l may be replaced by 8,(um?&) 

which would be a corresponding set of measured values for the ith deriva- 

tive of the output. The dimension of the state vector 2 will correspond 

to either the assumed order of the system or the number of output state 

variables (derivatives) which can be measured. In practice this order will 

probably be determined by the number of state variables which may be es- 

tablished by measurement and/or estimation techniques. The interpolated 

approximation of the total state may now be written as: 

z((n+l)T) = 9 2-l g!hn,'*> 

where 9 is a rectangular matrix of the form: 

I>lr= 

1 
. . . . 
<P> (P> 
x1 x2 . . 

6 
- “M 

(B-6) 

(B-7) 

where p is the assumed system order. 
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APPENDIX C 

SOME STABILITY CONSIDERATIONS 

One of the basic features of the control algorithm is that the plant 

is assumed to be unknown and no attempt of identification is made in the 

sense of plan-t parameters. Under such an assumption no rigorous con- 

clusions concerning stability during a control operation can be drawn. 

However, the control process can monitor whether an appropriate norm of 

the distance between the actual state, z(t), and the desired state, r(t), 

as measured in the n-dimensional manifold, is decreasing at least on the 

average. If it is observed that this is so, the control algorithm is 

operating in a stable manner. 

The change in the error norm may be written 

where e(kT) is defined elsewhere in the text as 

e&T) = r(kT) - x(kT) 

(C-1) 

and the positive definite matrix g defines the norm; i.e. if H = I - - 
equation C-l defines the Euclidean norm. Equation C-l may be evaluated 

during individual runs where the concept of stability employed must 

necessarily depend upon the trajectory of the desired state. 

In order to render the concept of stability more tractable to defini- 

tive conclusions, assume for the moment that r(t) is the null vector 0 for 

all t contained in the time interval (t,, tb) during which control of the 
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plant is desired. In this case, the change in the error norm is express- 
ible as 

(C-3) 

Proving that Ek is negative for .a11 x(kT) suffices to assure global asymp- 
totic stability by Liapunov's second method and Krasovskii's theorem (refer- 

ence 1) when the order of the state variable x(t) is equal to the actual 

order of the plant. 

For study purposes, it is useful to evaluate equation C-3 assuming 

specific known plants. Such a study may be definitive as to the classes 

of plants for which stable operation of the control algorithm is possible. 

If the plant is assumed to be linear, then equation C-3 may be written 

in the form 

Ek= - 
[ 

x’(ltT’) F’ ((k+l)T, kT) + uk X'((k+l)T, kT) 1 II 
kT) x(kT') + X((k+l)T, kT) uk 1 (C-4) 

or when uk is evaluated in terms of the control policy 

Ek = W'((k+l)T, kT) 1 [ g W((k+l)T, kT) x(kT') 1 
- 2' (kT") H &To) 

(C-5) 
-- 
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tihere 

~((k+l)T, kT) X'((k+l)T, kT) g 

$(k+l)T, kT) = I - - 1 F((k+l)T, W 
&'((k+l)T, kT) 5 X((k+l)T, kT) 

(C-6) 

The form of equation C-5 is 

El: = - - x'(kTO) _M((k+l)T, kT) x(kT') (C-7) 

where if _M can be shown to be positive definite for all kT, global asymp- 

totic stability is assured. 

In general, it is difficult if not impossible to obtain explicit 

expressions for x and X if the plant is time varying. The linear stationary 

case for which expressions for g and X are possible is discussed in detail 

in Section 2.1 of the text. 

If the plant is nonlinear, the control policy equation is a nonlinear 

function of uk for which no closed form solution is practical. For this 

reason, it is difficult to reach general conclusions as to the stability of 

the control operation using the nonlinear control algorithm. 

232 



I 

REFERENCES 

1. Kalman, R. E. and Bertram, J. E., "Control System Analysis and Design 
Via the Second Method of Lyapunov," ASME Trans. Ser. D, June, 
1960, pp. 371-400. 

233 



APPENDIX D 

REPRESENTATIVE SET OF LINEAR STATIONARY PLANTS 

The set of plant transfer functions documented in this appendix is a 
subset of the total set of plant transfer functions considered for experi- 

mental study. The set listed here contains &hose used in the more complete 

simulation studies. The letter to the right of each transfer function re- 

fers to a brief discussion of the transfer function in following pages of 

this appendix. 

D.l SECOND ORDER TRANSFER FUNCTIONS 

(1) 1 

C (s+0.5)2+l 1 
(2) 1 

s2+l 

(3) 1 

[(s-0.5)2+1] 

(4) 1 

[(s-1)2+1] 

(5) (s+l) 

[(s+O.5)2+1] 

(6) (s+l) 
(s2+l) 

D.2 THIRD ORDER TRANSFER FUNCTIONS 

(1) 1 

s[(s+O.5)2+1] 
(Cl 

(0 (2) 1 
s(s2+l) 
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(3) 1 

(s+l) [(s+o.l)2+1] 

(4) 1 

(s+O.2) [(s+o.5)2+1] 

(5) (s+O.5) 

s[(s+O.5)2+1] 

(6) (s+l) 
s(s2+l) 

(7) (s+3) 

(s+1)[(s+0.2)2+102] 

D.3 FOURTH ORDER TRANSFER FUNCTIONS 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9 

[(s+0.5)~+l]~(s+O.z)2132] 

1 

~~+0.5)~+1][(~+6)~+5~] 

[(s+o.5)2+:][(s+l)2+52] 

1 

(s+l)(s+5)[(s+o.5)2+1] 

1 

s(s+1)[(s+0.5)2+1] 

1 

s(s+5) (s+o.5)2+l [I 1 
1 

s(s+10)[(s+0.5)2+1] 

(s+2.8) 
s(s+ll)[(~+l.25)~+1] 

(s+O.3) 

s(s+9)[(s+o.4)2+1] 

(C) 

(C) 

0) 

00 

0) 
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(10) (s+O.O8) 

s(s+4.5)[(~+0.08)~+1] 

(12) (s+0.5) 

[(s+o.5)2+l][(s+o.2)2+32] 

D.4 FIFTH ORDER TRANSFER FUNCTIONS 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

1 
s[(~+O.5)~+1][(~+6)~+5~] 

s[(s+0.5)2+lj[(s+0.2)2+32] 

1 
s (s+1)2+1 

C I[ (s+0.2)2+102] 

1 

][(~+2)~+3~ ] 

1 

s(s+l)(s+lo)[(s+o.5)2+1] 
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(H) 

(1) 

(1) 

(J) 

(J) 

(J) 

(J) 

(J) 

(J> 

(J) 

(J) 

(J) 

(J) 

(K) 



(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(s+l)(s+3) 

s[(~+O.5)~+1][(~+6)~+5~] 

(s+l)(s+3) 

s (~+0.5)~+1 
[ I[ (~+0.2)~+3~ I 

{(~+3)~+2~1 

(~+0.5)~+1][(~+0.2)~+3~ 1 
s+o.5 

s (s+l)2+l 
[ I[ (s+o.2)2+lo2 1 

D.5 SIXTH ORDER TRANSFER FUNCTIONS 

(1) 
s(s+lo)[(s+0.~)2+l]~s+0.2)2+32] 

(2) 

s(s+lo)[(s+l)~+l][(r+o.l)2+lo2] 

(3) 
s(s+10)[(s+l:2+l][(st2)2+32] 

(4) 1 
(s+10)(s+10.5)[(s+o.1)2+52][(s+5~2+l] 

(5) 1 
(s+5)(s+1o)[(s+l)2+l]~s+o.5)2+32] 

(6) 1 

(s+10)(s+20)[(s+0.5)2+l][(s+0.2)2+32] 

(K) 

(K) 

(K) 

(K) 

(K) 

(K) 

(K) 

(K) 

(L) 

CL) 

03 

04 

a) 

CL) 
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(7) 
[(s+l)2+l,[(s+o.2:2+102][(s+O-5)2+62] 

(9) (s+O.O2) (s+O.36) 

s(s+12)[(s+0.5)2+162][(s+0.37)2+1] 

(10) (s+l)(s+3) 

II: (s+o.2)2+1 1 
(11) (s+O.O2) (s+O.36) 

s(s+12)[(s+0.5)2+42][(s+0.37)2+1] 

(12) {(s+o.3)2+o.52/ 

s(s+lo>[(s+o.5)2+l][(s+o.5)2+32] 

(13) (s-I-6) (~+0.3)~+0.5~ 

s(s+lo) (~+0.5)~+1 
C IC (~+0.2)~+3~ 1 

(14) (s+5)j(s+1)2+22r 

(s+10)(s+10.5)[(s+o.1)2+52]~s+5)2+l] 

(15) (s+6) {(S+l)2+22f 

(s+3)(s+10)[(s+0.1)2+52][(s+5)2+1] 

(16) (s+2)(s+0.75) 

[(s+~)~+l] [(s+0.2)~+10~]~~+0.5)~+6~] 

D.6 SEVENTH ORDER TRANSFER FUNCTIONS 

(1) 

s(s+4)(s+10)[(s+~.2)2+l][(.+4)2+52] 

(2) 

s(s+4)(s+10)[(s+~)2+l][(s+2)2+32] 

(3) 
s(s+lo)(s+lo.5)[(s:o.1)2+52][(s+5)2+l] 

(4) 
s[(s+l)2+l][(s+0.2;2+102][(s+0.5)2+62] 

OJ) 

(Ml 

(N) 

00 

(N) 

(N) 

(N) 

(N) 

(N) 

(P) 

(PI 

(P) 

(PI 

238 



(5) ..- 
(s+10)[(s+6)2+l][(s:0.5)2+22][(s+0.1)2+102] 

(6) 
(s+10)[(s+6)2+l][(s:0.5)2+102][(sC0.1)2+22] 

(7) (.s+5)(~+8)((~+0.4)~+0.8~) 

s(s+4)(s+lo)[(s+o.2)2+l][(s+4)2+52] 

(8) _ {(~+1)~+4~t{(s+l)~+8~t 

(s+3)(s+6)(s+10)[(s+l)2+22][(s+3)2+62] 

(9) (s+O.75)(s+2) 
s[(s+l)2+l][(s+0.2)2+102][(s+0.5)2+62] 

(10) --. (s+O.75) (s+o.l)2+22t 

s (s+1)2+l C 
][(s+0.2)2+102][(s+0.5)2+62] 

(11) .._. _. hs+w2+221 

s (s+1)2+l 
C I[ (s+o.2>2+lo2 I[ (~+0.5)~+6~ 1 

(12) _.-. .-.. h s+1)2-tl/ 
(s+10)[(s+6)2+l][(s+0.5)2+102][(s+0.1)2+22] 

D.7 EIGHTH ORDER TRANSFER FUNCTIONS 

(1) 
s(s+10)[(s+6)2+l][(s+O~5)2+22]~s+0.1)2+102] 

(2) -~. -- 
s(s+10)[(s+6)2+1][(s+OT5)2+102][(s+0.1)2+22] 

(3) __, 
s(s+lo) (s+1)2+lo2 

II ]~~:6)~+1][(~+2)~+3~] 

(4) _-. .~... 
[(s+l)2+l][(s+5)2+22][(s+~.5)2+52]~s+0.1)2+102] 

D.8 NINTH ORDER TRANSFER FUNCTIONS 

(1) _ _ -. 
s[(s+l)2+l][(s+0.1)2+102][(:+0.5)2+52]~s+5)2+22] 

m 

(PI 

CR) 

(R) 

(RI 

(RI 

(RI 

00 

(P) 

(9 

(P) 

09 

09 
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(3) 
(s+lO)[(s+l)2+l~[(s+O.l)2+~02][(s+O.5)2+52]~(s+5~2+22] 

(PI 

D.9 BRIEF DISCUSSION OF TRANSFER FUNCTIONS 

(A) These second order transfer functions are typical of those con- 

sidered in Emerson's previous work, (reference 1). They are included to 

provide continuity in the research effort, and to study the effect of new 

types of prediction as compared with some of the previously studied types. 

The set of four plants range from a reasonable well damped oscillatory pole 

pair (1) to no damping (2) and finally to a pair of unstable plants (3,4). 

(B) These second order transfer functions possess denominators which 

are typical of those considered in Emerson's previous work (reference 1) 

with no zeroes. They are included to study the effect of adding zeroes to 

a low order transfer function for a relatively uncomplicated starting 

point. 

(C) These third order transfer functions are typical of those con- 

sidered in Emerson's previous work (reference 1). They are included to 

provide continuity in the research effort, and to study the effect of new 

types of prediction as compared with some of the previous types used. 

(D) These third order transfer functions possess denominators which 

are typical of those considered in Emerson's previous work (reference 1) 

with no zeroes. They are included to study the effect of adding zeroes to 

transfer functions only slightly more involved than second order transfer 

functions. 

(E) These fourth order transfer functions are of three basic types 

with each possessing the same predominant pole pair (-0.5+jl). Transfer 

functions (l), (2), and (3) contain a second complex pole pair in various 

parts of the complex plane in order to study the effect of different 
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positions of the second pole pair. Transfer function (4) contains two real 

poles neither of which is at the origin. Transfer functions (5), (6), and 

(7) are included to study the effect of moving a real pole progressively 
further out on the real axis. 

(F) This transfer function is a typical short term approximation to 
the pitch angle control system for a conventional transport flying at 

150 mph at sea level, (reference 2). 

(G) This fourth order transfer function is a typical short term ap- 
proximation to the pitch angle control system for a jet transport flying 

at 600 ft/sec at 40,000 ft., (reference 2). 

(H) This fourth order transfer function is representative of the 

pitch angle control system for the X-15 aircraft at Mach 6 at 60,000 ft., 
(reference 3). 

(I) These fourth order transfer functions are included to study the 
effect of adding zeroes to transfer functions considered in previous 
Emerson work (reference 1) which were observed to be among the most dif- 

ficult to control. 

(3) These fifth order transfer functions are essentially of three 

types. The first set (l), (2), (3), and (4) consist of those having a 
pole at the origin, a relatively predominant pole pair, and a second pole 
pair in various parts of the plane. The second set (5), (6), and (7) con- 
sists of those having a pole at the origin, a predominant pole pair, and 

two real roots in various configurations. The third set (8), (9), and (10) 
consist of two pole pairs with one being relative predominant to different 

degrees, and a pole on the real axis. 

(K) These fifth order transfer functions with zeroes are included to 
study the effect of adding zeroes in various configurations to pole con- 

figurations similar to those discussed in (J). They represent no known 

physical plant but do cover a wide spectrum of possible configurations. 
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(L) These sixth order transfer functions are essentially of three 

types. The first set (l), (2), and (3) consist of a pole at the origin, 

a real root, and two complex pole pairs with one being relatively predomi- 

nant to varying degrees. The second set (4), (5), and (6) is similar to 

the first except there are two poles on the real axis and the effect of 

various locations of these two poles may be studied. The third set (7), 

and (8) consist of three complex pole pairs with one being slightly more 

well behaved than the other. 

(M) This sixth order transfer function is a typicallong term approxi- 

mation to the pitch angle control system for a jet transport flying at 

600 ft/sec. at 40,000 ft., (reference 2). 

(N) These sixth order transfer functions with zeroes are included to 

study the effect of adding zeroes in various configurations to pole con- 

figurations similar to those discussed in (L). They represent no known 

physical plants, but do cover a wide spectrum of possible configurations. 

(P) These seventh, eighth and ninth order transfer functions are not 

representative of any known physical plants. They do cover a wide spectrum 

of possible pole configurations. 

(R) These seventh order transfer functions with zeroes are included 

to study the effect of adding zeroes in various configurations to similar 

'poles-only' seventh order transfer functions. 
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APPENDIX E 

THE ABILITY OF THE CONTROL POLICY TO FOLLOW DESIRED 

TRAJECTORIES USING THE DIFFERENT TYPES OF PREDICTION 

The purpose of this appendix is to collect a set of analytical studies 

necessary to correlate some experimental observations with what would be 

predicted from an analytical viewpoint. The studies here are after the 

fact' in the sense that certain trends were observed in the experimental 

data, and analytical studies were made to explain these trends. The 

studies are not intended to exhaust the entire area as time permitted only 

a limited 'scratching of the surface . 

E.l SINGULARITY OF A CERTAIN MATRIX 
The analytical studies presented in the sequel make use of the singular 

nature of a particular matrix form. A general proof of the singularity of 

the matrix form is given here. 

The particular form in question is 

aa'D 
r=-- ---I 

a' D a - -- (E-1) 

where Q is a column matrix, 2 is a nonsingular diagonal matrix, I is the 

the identity matrix, and Q, g and 2 are of conformal order, 

Since a. is a column matrix and therefore has a rank of one, the 

square symmetric matrix, a a’ - -' also has a rank of one. The square matrix 

resulting from the product of a a' with the nonsingular matrix D also has a -- 
rank of one. It will be symmetric only if _D is of diagonal form. 

a a’ D drank of one -- - (E-2) 
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It is easily shown that 

a'Da = trace ( a a' D ) - -- -- - (E-3) 

Since a a'D has a rank of one, --- it possesses only one non-zero eigen- 

value so that by equation E-3, the scalar quantatity a'D a is equal to --- 
that eigenvalue, since the trace of a matrix is equal to the sum of the 

eigenvalues of the matrix. 

Let 2 be the matrix which transforms 2 ~'2 into its diagonal form (or 

Jordan canonical form). 

r-l ( fi Q’ _I! >r = 4 (E-4) 

Because i\ has only one non-zero eigenvalue,Xl, and the trace of a 

matrix is invarient under a similarity transformation: 

S’Da =A -- 1 (E-5) 

Applying the same similarity transformation to c 

Thus, 1 is similar to & 

Ed = &I 
xl - 

-J= 

(E-6) 

(E-7) 
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where Id is obviously singular with a rank equal to one less than its order. 

Since similar matrices have the same set of eigenvalues, 1 is also singular 

with a rank of one less than its order. Q.E.D. 

E.2 THE POLES ONLY CASE 
When a plant has a transfer function containing only poles, the 

state equation may be written in the form 

x( (k+l)T) = F x(kT) +a uk -- (E-8) 

where the control force, u k' is given by the control policy equation: 

a ' ,K -a r((k+l)T) - 

Uk = 
Ea x(kT)l 

'Ka aa - -a 

where a and F -a -a are the approximations to 12 and 2 according to what type of 

prediction is used. (i.e. Exact, Taylor, etc.) 

Make the definition 

aa'K 
r = ---a - 
-a 

aa 'Ka - -a 

Substitution of equations E-10 and E-9 into E-8 yields 

x((k+l)T) = E - ra Fa x(kT) + ra r((k+l)T) 1 

(E-10) 

(E-11) 

Followinp A Step - Assume that for t 2 to, where t and to are contained in 

the open interval (t,, tb) during which control of the plant is desired, the 

desired output is given by: 

r’(t) = & = R 0 . . . 0 (E-12) 
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where R is the magnitude of the desired position. 

Assume that the actual steady state output is some constant times the 
desired output (the assumption is made that the control policy is 'operating' 

at a stable T - h point). 

(E-13) 
where 

- [ 
b 

1 
E = 

\ 
1 1 

J&s = s((k+l)T) = x(kT) k2q (E-14) 

and q is sufficiently large so that initial transients in the output may 

be assumed to have died out. 

Substituting equations E-13 and E-14 into equation E-11 and collecting 
terms yields 

%s = [F - Ea Ea + r, E 1 xss (E-15) 

Equation E-15 may be recognized as a special case of the more general eigen- 
value problem 

Az=Xz -- (E-16) 
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where in this case 

A=F - Ea Fa + II, 2 
(E-17) z=x - -ss 

For equation E-15 to be valid, A as defined by E-17 must possess an eigen- 

value of unity for some value of b in which case x will exist and will -ss. 
be the eigenvector of & corresponding to the unity eigenvalue. 

The desired value of b is unity, as the actual output will then be 

equal to the desired output and no steady state error will exist. If b+l 

then some steady state error will exist corresponding to the value of b 

for which A possesses a unity eigenvalue. 

Exact Prediction - To establish a reference standard against which to com- 

pare other types of prediction, the exact values of E and 2 will be assumed 

to be known in which case: 

= aa a 
a a' K 

r =r =-- - 
-a -e 2' K a -a 

Equation E-15 may then be written in the form 

%.s = g- C EeF+EeE]X -ss 

(E-18) 

(E-19) 
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If II,, exists as given by equation E-19, then for some value of b 

-r,E+r,E-I: 1 =o (E-20) 

If the actual and desired output states are to be identical, then E = 2 

(b = 1) and it must be possible to write the statement: 

Det E C 
-r,z+r -2 =o -e 1 

Factoring E-21 

Det C (& - 2) * (I - z) 1 =o 

(E-21) 

(E-22) 

Equation E-22 is a valid statement if either re-r or r-z is singular. 2-g 

will be singular only if the plant transfer function contains at least one 

pole at the origin, as in that event the first column of F is identical to 
that of 2. This, of course, depends on the specific nature of the plant 
and in general cannot be assumed. The matrix 1,-L has been shown to be 
singular (Section E.l) regardless of the specific form of 2 with a rank 
one less than the order of 2 so that E-22, hence E-21, are valid statements 
and the actual and desired steady state outputs will be identical. 

Conclusion - Assuming that the control policy is operated at a stable T-h 

point and Exact Prediction is used, no steady state output error will 
exist for a desired state of a constant output position regardless of the 

plant configuration. 

Taylor Prediction - When the control policy employs Taylor Prediction, the 

estimates of F and a will be ET and a -T' respectively, as defined in 
Section 2.1 and ca=ET as defined by equation E-23. 

aa T' K -- - 
IT = 

$ ii ST 
(E-23) 
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Equation E-15 may then be written in the form 

%is = - ET ET + ET 2 1 %s (E-24) 

For the actual and desired output states to be identical it must be shown 

that E=I and: -- 

ET ET + 1, - 2 1 = 0 (E-25) 

Factoring and rearranging E-25 yields 

z+rT (2 - $11 = ' (~-26) 

The first column of the product ET --T (I-F ) will be a column of zeroes be- 

cause the first columns of 2 and ET are identical. If E can also be as- 

sumed to possess a first column identical to that if 2 then the singularity 

of the matrix of the determinant E-26 is assured as the first column of the 

matrix will consist of a column of zeroes. This will be true only if the 

plant transfer function has at least one pole at the origin. 

Conclusion - Assuming that the control policy is operated at a stable T-h 

point and Taylor Prediction is used, no steady state output error will exist 

for a desired state of a constant output position in general only if the 

plant transfer function possesses at least one pole at the origin. If the 

plant transfer function possesses no pole at the origin, a steady error 

will exist corresponding to the value of b for which the matrix of equation 

E-24 is singular and the matrix determinant therefore zero. 

Interpolation Prediction - No analytical study has been made assuming Inter- 

polation Prediction. It would be expected that as 2-I-~ and aI-+' the 

results would be equivalent to those obtained using exact prediction. 

250 



Following A Ramp - Assume that for 

open interval (ta ,t,) during which 

sired output is given by: 

r'(kT) = ,R(kT) R 0 . . 

t>_to where t and t are contained in the 
0 

control of the plant is desired, the de- 

(E-27) 

where R is the magnitude of the desired output velocity. 

Define a vector 

Ar -ss = r'((k+l)T) - r'(kT) = RT O...O 
(~-28) 

k = 1, 2, . . . , n 

In terms of the difference between two successive desired states the de- 
sired output vector Ar -ss takes the form of a desired rate of change and is 

a constant vector for a constant T. 

Similarly, two successive state equations may be written 

z((k+l)T) = 2 x(kT) + 2 uk 

x(kT) = F x((k-l)T) + fi uk 1 -- 
(E-29) 

Subtracting one of the state equations from the other yields 

x( (k+l)T) - x&T) = g [x&T) - x((k-l)T] + 2 (yc - u.,& (E-30) 

Assume that the actual steady state output approaches a constant rate of 

change after the initial transients have died out 

Ax -ss = x((k+l)T) - x(kT) = x(kT) - x((k-l)T) k2q (E-31) 
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where the initial transients have died out by the time t=qT. 

The control policy equation will yield as solutions for uk and uk 1 

aa’ ,K [r((k+l)T) - Ea +T)] 
Uk = 

aa 'Ka - -a 

(E-32) 

sat g [L&T) - Ea $(k-1)Tl-j 
Uk-l = .iia’ ,K Sa 

Again make the definition 

aa'K 
r =--a - 
-a 

sa 'Ka - -a 
(E-33) 

Substituting equations E-28, E-31, E-32 and E-33 into equation E-30 yields 

ess = ?I &ss + Ea arss Ax -raF Ax -a -ss 

Assume a steady state error exists of the form 

mss = 5 ass Ar 

where 
b 

1 

\ '1 1 

(E-34) 

(E-35) 

(~-36) 
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Substituting E-25 into E-34 and collecting terms yields 

Ax = F-raFa+raE -ss I: Ax - 1 -ss (E-37) 

Equation E-37 is of the same form as equation E-15 and similar solutions 

will exist for values of E for which unity eigenvalues exist. -- 

Exact Prediction - To establish a reference standard against which to com- 
pare other types of prediction, the exact values of E and 2 will be 
assumed to be known in which case: 

aa = a 
a a' K 

r -a 
qe=-- - 

a' Ka - -- 

Equation E-37 may then be written in the form 

Ax = C F -ss - -reF~+reE] ass 

(~-38) 

(E-39) 

For the actual and desired output rates to be the same E=I (b=l) and the -- 
determinant of equation E-40 must be zero. 

-E,F+r -2 =o -e 1 
Factoring E-40 

(Ee - J).(r - E) = 0 1 

(E-40) 

(E-41) 
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That equation E-41 is a valid statement (hence E-40 is valid) is evident 

regardless of the plant configuration as it has been shown (Section E.l) 

that cc-I is. singular. 

Conclusion - Assuming that the control policy is operated at a stable T-h 

point and Exact Prediction is used, no steady state output rate error will 

exist for a desired state of a constant rate regardless of the plant con- 

figuration. The actual state can therefore differ at most from the desired 

state by a constant positional error. 

Taylor Prediction - When the control policy employs Taylor Prediction, the 

estimates of x and 2 will be ET and zT and Ia=IT as defined by equation E-42 

Equation E-37 may then be written in the form: 

Ax = F-I? F +rTE Ax -ss [: -T-T - 1 -ss 

(E-42) 

(E-43) 

For the actual and desired output states to be identical it must be shown 

that E=I and -- 

Factoring and rearranging E-44 yields 

(E-44) 

(E-45) 
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The first column of r, (1 _ - FJ will be a column of zeroes because 

the first columns of 1 and zT are identical. If E. can also be assumed to 

possess a first column identical to that of I, then the singularity of the 

matrix of the determinant E-45 is assured as the first column of the 
matrix will consist of a column of zeroes. This will be true only if the 

plant transfer function has at least one pole at, the origin. 

Conclusion - Assuming that the control policy is operated at a stable T-h 

point and Taylor Prediction is used, no steady state output rate error 

will exist for a desired state of a constant rate if the plant transfer 

function possesses at least one pole at the origin. The actual state 

can, therefore, differ at most from the desired state by a constant 
positional error. If the plant transfer function does not contain a pole 

at the origin, a steady state rate error will exist corresponding to the 

value of b of matrix g for which the matrix of equation E-43 is singular. 

The actual and desired output positions will then diverge at a constant 
rate depending on the value of b. 

E.3 THE POLE-ZERO CASE 
When a plant has a transfer function containing both poles and zeroes, 

the state equation may be written in the form: 

x((k+l)T-) = z x(kT-) + bl Uk + h2 Uk-l (~-46) 

or, as has been shown in Appendix A, in the alternate form: 

x((k+l)T-) = E x&T-) + 2 Uk + c (y, - Uk-l) (E-47) 

The alternate form E-47 is the most useful form for the analytical 

studies in this appendix so that when the state equation is referred 
to, E-47 will be tacitly implied. 

Following a Step - Assume that for t>to where t and to are contained. in 

the open interval (ta, tb) during which control of the plant is desired, 

the desired output is given by: 
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r'(kT) = I& = , R 0 . . . 0, 

where R is the magnitude of the desired position. 

(E-48) 

Assume that the actual steady state output is some constant times 

the desired output (the assumption is made that the control policy is 

operating at a stable T-h point). 

=ss =Ex - -ss 

-[ 

b 
1 

E= 
\ 1 

%s = x((k+l)T-) - x(kT-) k>q 

(E-49) 

(E-50) 

where q is sufficiently large so that initial transients in the output 

may be assumed to have died out. 

It can be easily shown by considering the differential equation of 

the plant that the control force will be a constant value when steady 

state conditions have been reached so that the steady state control force 

will be given by the control policy equation as: 

x; x [ rss - Ea xss + Ca Uss u = 1 ss A' KX -a - -a 
which when solved for an explicit value of uss yields: 

u = Xl E [rss - s xssJ 
ss -1; ,K 0 - Cal -a 

Substituting equations E-52, E-50, and E-49 into equation E-47 and 

collecting terms ye$lds 

(E-51) 

(E-52) 

[ 
. 

%s = E - Ea Ea + ra E 1 x5-s (E-53) 
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where 
a A’ K - -a - 

r = -a 
X'KO -sa> -a - -a 

(E-54) 

If the actual and desired output states are to be identical, then 
2 = 2 (b=l), and it must be possible to write the statement 

Det g C -raga+r -r =o -a 1 (E-55) 

Exact Prediction - To establish a reference standard against which to 

compare other types of prediction, the exact values of I?, 1, and 2 will 

be assumed to be known in which case: 

x =A -a 

= Ca c 

The determinant equation E-55 may then be written in the form 

Det C 
(G - r).(r - lJ> 1 =o 

(~-56) 

(E-57) 

Unfortunately re is not of the form which will assure that r -e - 2 will 

be singular. This, of course, is different from the case for poles 

only in which re - 2 was singular. For E-57 to be a valid statement 

F - - 2 must be singular which requires that the plant transfer function 

must have at least one pole at the origin. 

If the plant does not possess a pole at the origin then there will be 

some steady state error corresponding to the value of b of the matrix 
$ for which equation E-58 is valid 

Det [x -r,F+&E-L 1 =o - (~-58) 

Conclusion - Assuming that the control policy is operated at a stable 
T-h point and Exact Prediction or Interpolation Prediction is used in 
which the interpolation provides good estimates of I?, A, and 2, no 
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steady state output error will exist for a desired state of a constant 

output poisition in general only if the plant transfer function has at 

least one pole at the origin. If it does not, a steady state error will 

exist corresponding to the value of b of matrix g for which the matrix 

of equation E-58 is singular and the matrix determinant therefore zero. 

Following a Ramp - Assume that for t 1 to where t and to are contained in 

the open interval (t,' tb) during which control of the plant is desired, 

the desired output is given by: 

I'(kT) =, R-(kT) R 0 . . 0 (E-59) 

where R is the magnitude of the desired output velocity. 

Define a vector 

Ar -ss = r'((k+l)T) - r'(kT) =, RT 0 . . . 0 (E-60) 

k=l,2,. . . n 
In terms of the difference between two successive desired states the 

desired output vector ess takes the form of a desired rate of change and 

is a constant vector for a constant T. 

Similarly, two successive state equations may be written 

x((k+l)T-) = F x(kT-) + 2 uk f 5 (uk - ulBl) -- 
(~-61) 

x&T-) = g x((k-UT-) + 2 yCml + C $1 - Uk-2) 

One of the state equations may be subtracted from the other yielding 

equation E-62. 

x((k+l)T-) - x(kT-) = z I: x(kT-) - x((k-l)T-) + 2 ("k - uk-l)(E-62) 1 + 2 (Uk - u k-2) 
Assume that the actual steady state output approaches a constant 

rate of change after the initial transients have died out 

Ax = x((k+l)T-) - x(kT-) = x(kT-) - $(k-l)T-) k 2 q (E-63) 
-ss 
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where the initial transients have died out by the time t = qT. 

Assume a steady state error exists of the form 

Ar -ss = Ekss (~-64) 

where operation at a stable T-h point is assumed. 

It can easily be shown by considering the differential equation,of 

the plant that the control force will approach a constant rate of change 
when steady state conditions have been reached. Any particular control 

force is given by the control policy equation 
1; ,K [r((k+l)T) - g SW-1 + Ca Uk-l] 

Y = 
(~-65) 

A' KX -a --a 
The steady state rate of change of the control force for steady 

state conditions will be given by the difference between two successive 
control policy equations 

A’ X AU = -’ [: kss - E Azss + sa Auss] (~-66) 
ss A' KX -a - -a 

which when solved for an explicit value of Auss yields 

A’& Ar 
Au z-a C -ss - uEss 1 (~-67) 

ss 

Substituting equations E-67, E-64, and E-63 into equation E-62 and 
collecting terms yields 

Ax -ss = F-~a~+~a~]Ax C -ss 

where 
aX' K 

r = ---a- 
-a A'K(X -sa) -a- -a 

(E-68) 

(E-69) 

If the actual and desired output rates are to be identical, then 
E = J (b=l), and it must be possible to write the statement 

Det x - -a c r za+r -I -a 1 =o (E-70) 
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Exact Prediction - To establish a reference standard against which to 

compare other types of prediction, the exact values of F, &, and c will 
be assumed to be known in which case: 

F -a =F 

Xa = x 

= Ca c 

a A' K -- - 
r -a = re = A' E (A - 2) 

The determinant equation E-70 may then be written in the form 

(Ee - r).(r - I?) = 0 1 

(E-71) 

(E-72) 

Again, xe is not of the form which will assure that r - _5 will be -e 
singular. For E-72 to be a valid statement F-I must be singular which -- 
requires that the plant transfer function must have at least one pole at 

the origin. 

If the plant does not possess a pole at the origin, then there will 

be some steady state error corresponding to the value of b of matrix E 

for which equation E-73 is valid. 

r F+r,E-L =o 1 (E-73) 

Conclusion - Assuming that the control policy is operated at a stable T-h 

point and Exact Prediction or Interpolation Prediction is used in which 

the interpolation provides good estimates of I?, A, and c, no steady state 

output rate error will exist for a desired state of a constant rate if 

the transfer function possesses at least one pole at the origin. The 

actual state can, therefore, differ at most from the desired state by a 

constant positional error. If the plant transfer function does not 

contain a pole at the origin, a steady state rate error will exist 

corresponding to the value of b of matrix E for which the matrix of 

equation E-73 is singular and the matrix determinant therefore zero. 
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APPENDIX F 

STUDY ON SINGULARITY PROBLEM WITH THE INTERPOLATION METHOD 

In the present method, the interpolation is between a group of quantities 

-m at t = mT", a and a set of quantitiesem one decision interval later at 

t = (m+l)T'. 

The set% (&measured at t = mT) may include a Variety of quantities 

on an optional basis. 

In our application of the interpolation method the G set of 
measured quantities consists of the initial conditions q -m at the beginning 

of M decision intervals, and the control forces, u m (constants), applied 

during the intervals. The fl set is composed of the outputs x at the end -m m 
of the M decision intervals. 

Based on the above information the method of solution for the system 

approximating functional, X (u,z), means solving the following determinant 

equation: 

%u ,rr> X1(U1’Q * * * 5&-h’%) 
Det 1 = 0 (F-1) $4U,~) $‘ul ,q> - * * &&$.f ‘& 

where x 1' X2’ *-- "M are the measured plant outputs at the end of M 

decision intervals, _ and @(u,z) is a vector of M linearily'independent 
analytic base functionals (u,~) and e1 , -2 , -** d *M are this vector 
evaluated at the measured data points ul,q, U2712’ ..."$zM. 

The determinant is readily expanded for a solution of z(u,l); (See 

Appendix B for a detailed equational derivation): 

2qLl,x) = $1 2 -IL &b,7]) 
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Because of the discrete nature of the interpolation equation it is 

convenient to write Equation F-2 as; 

%(n+l)T) = $’ s-l &du,,qJ (F-3) 

where ? is the approximate value of the output at (ntl)T due to & initial 

conditions at t=nT and a control force u n applied over the decision interval 

nT 2 t < (n+l)T. 

If several derivatives of the output are measured, the determinant 

equation (like Equation F-l) can be set up for each one of them. These 

equations may then be combined into a single equation; 

g((n+l)T) = l+X 9-l !&dun ,JJ (F-4) 

It may be noted that as stated this is still just several single variable 

interpolations concisely stated rather than multi-input-output interpolation. 

All depend on the nonsingularity of 2, which brings us to the topic of 

this appendix. 

. 
F.l SINGULARITY OF 2 

In such a situation two types of conditions which could possibly 

make 2 singular are of basic concern. These are: 

(a) Inherent singularity 

(b) Accidential singularity 

INHERENT SINGULARITY 

Inherent singularity implies something basic in the system and the 

proposed process which would make the desired parameters unobservable. An 

obvious fact is that 2 depends only on the input 3 and not on the 

output 2. In other words, the only requirements for the nonsingularity 

of 2 is that the vectors 4 be linearl.y independent. This is similar - 
to curve fitting in two dimensions. For instance, if a parabola is to be 

fitted it will be enough to select three abscissa (x) points which are 

different. The curve y itself only needs to have finite values it these 
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points for a parabola to be defined. The nature of the curve has no 
bearing on the existance of the parabola although it obviously very 

strongly affects the quality of the approximation to the curve by the 

parabola. The existance of the parabola will, however, depend on the 
selection of the three abscissa points. If any two of them should 
coincide, the problem becomes singular. If two points are close together, 

the problem may become ill conditioned. 

Our problem is the multivariable version of the simple parabola 
fitting, so it is not surprising that the singularity of g hinges only 
on the inputs or its components 11 and u, and is independent of the system 

proper. Since the singularity is not influenced by the system there is no 

possibility of inherent singularity or unobservability. 

ACCIDENTAL SINGULARITY 

The singularity of 2 depends solely on the selection of the 2 

vectors which, however,contain among other items the state and 

consequently do not represent an arbitrary choice. Accidential singularity 
might occur if the columns or the rows of 2 are linearly dependent. 

The possibility of linear dependence of the columns is considered 

first. The simplest way trouble may develop would be when two or more 

columns are proportional. However, this is not feasible since at least 

a section of the columns will consist of the state and (unless it be a constant 

or zero state) the states at consecutive decision points will not be 

proportional. 

In the application of the interpolation method to the linear systems, 

the & vector is composed of the control force, u, and the initial state,2 
That is: 

U 

&(u,,Q = n [ 1 x(nT) 
(F-5) 
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Thus, for C#J (un,sn) assumed to have e components the singularity - 
would require: 

U U 
n-e Un-&l ' ' ' n-l 

Det = 0 (F-6) 

&i-e &-&l * * - s-1 1 U 
or n-e 

-1 . 
U n-l 

= x’ - n-1 G-e ' ' ' k-2 ’ i-1 l . (F-7) 

U n-2 

In other words, there will exist a u n-l which will make 9 singular 

provided 

Det C &,, * . . k-21 + O (F-8) 

or 

Det ( E sBe + Unme S! > - - . ( g %-3 + une3 2 > # 0 1 (F-9) 
where g is the state transition matrix and a is the sensitivity vector. 

Since this depends on the control force sequence, there should be 

some u k sequence where this is nonsingular. Then a final un 1 control 

force as defined above should exist which makes CJ singular. The occurance 

of this should be a rare event, however, which could be remedied by simply 

skipping the inversion of 2 for one decision interval. 

There still remains the question of whether the particular control 

policy which is used in our control system does not lead to just such a 

singular sequence of control forces. The control force equation is: 

a' x C r((n+l)T) - E x(nT)] 
u = (F-10) 

n a' K a - -- 

where 2 is the sensitivity vector, X the weighting matrix, g the state 

transition matrix, r(n+l)T) the desired state at t = ((n+l)T), and 

&(nT) the output state at t = nT. 
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Considering the case where L((n+l)T) is zero or constant the control 

equation may be rewritten as: 

U n = E' x(nT) 

where 2 is a fixed vector defined for zero desired case as: 
-a'KF 

El= - -- 
2' K a -- 

For this situation 2 may be written 

where 
aa'KF 

Q=F+aE'=p-,T,-= 
- -- 

-- - F 

(F-11) 

(F-12) 

I (F-13) 

(F-14) 

This matrix is inherently singular. Furthermore, it will be singular 

whatever is selected for E as long as it is constant. Even inclusion of 
other variables in $ besides u and x will not change the trouble. The 

basic conclusion is that for linear systems any policy which results in 
using a linear combination of the state variables for determining the 
control force makes the matrix 4, needed singular. This condition exists - 
for our linear control policy only when the desired output state is either 

zero or constant. If the desired output state;((n+l)T) consists of a 

nonconstant trajectory, the 2 will not be constant, and the matrix will -- 
not be inherently singular due to the control force equation. 

Also, of importance is the conclusion that for the nonlinear case the 
situation leading to + being inherently singular can not occur. Since 
the control force equation for the nonlinear control policy is a cubic 

equation,the linearity of selecting the control force is absent. 

Now let the chance of singularity of 9 because of linear dependence 
of the rows be investigated. The critical situation here is that if any 

of the components of &J such as the control force (or altitude or Mach number 

should they be included) stays constant over a number of intervals,then 
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there will be two or more rows in c& consisting of the same numbers. 

Therefore, these rows are proportional to each other,and the matrix is 

singular. Such a condition could easily occur as a result of prolonged 

use of the maximum available control force. Also, in the nonlinear 

case the 9 vector includes such items as u and u2; and so the possibility 

of such singularity is more likely to occur:. 

With the above qualifications, it seems that the matrix 9 should 

be counted on to be nonsingular except in cases of accidential coincidences 

in the coefficients. This event should be somewhat rare. 
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APPENDIX G 

DERIVATION OF THE SECOND ORDER VOLTERRA SERIES WORKING EQUATIONS 

The purpose of this appendix is to present the general theory of the 

Volterra series plant representation and the equational development of a 
truncated series approximation. The method is termed the Volterra series 

approximation as opposed to the interpolation approximation discussed in 
Appendix B. Although both procedures.rely on the existance of a Volterra 

series representation of the plant, the approximation procedure developed 
in this appendix follows more directly from the actual series. Relegation 
of the discussion of the Volterra series procedure to an appendix should 
not be interpreted as assigning it secondary importance as compared with 
the interpolation procedure. As is discussed in Section 4.2 of the text, 

the choice of the interpolation procedure for more extensive investigation 

was largely based on expediency, rather than any superior features. 

The Volterra series procedure has been thoroughly documented by 
Zaborszky and Humphrey (reference 1) but, in order to make this report self 

contained, Section G.l is a summary of the pertinent sections of their paper. 

G.l CONTROL WITHOUT MODEL OR PLANT IDENTIFICATION 
The assumptions concerning the controlled plant are very general. They 

are valid for almost all physical equipment. Specifics like assumption of 

a particular order, linearity or of slow variation of the system are avoid- 

ed. Information about the plant's behavior is derived solely from potenti- 
ally noisy measurements. The output quantity and the control variable 

(including possibly a few derivatives) are available for measurement, but 
the complete "state" vector is not. Under the assumptions which are made 

here, its dimensionality is unknown. 
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ASSUMPTIONS 

Application of the control method described in the paper is restricted 

to systems which produce continuous and bounded outputs, x(t), when excited 

by continuous and bounded control inputs, u(t). The input-output relation- 

ship of such a system is a functional which maps the Banach space of con- 

tinuous functions over an interval onto itself. If such a functional is 

continuous, it can be approximated over finite time intervals arbitrarily 

closely-by a finite functional polynomial (reference 2) of the form 

.Jt t 

x(t) = y(t) + CJ:.L/‘hj(t,Tl, . . . ,T~) u$) . . . u(~~) dT1 . . . dTj 

j=l 0 0 

where h 
j 

are the kernels of the functional polynomial fit. 

If the functional is analytic, it can be represented by an infinite 

series (J=m) of the type used in equation G-l, a "Volterra" (reference 3) 

or functional Taylor series; hj are then the Volterra kernels. In equation 

G-l, y(t) represents the free response which would occur in the absence of 

any control input, u(t). It must be remembered, however, that equation G-l 

does not imply superposition because the h. kernels are not unique. 
J They 

depend on y(t), just as the coefficients of an ordinary Taylor series de- 

pend on the point around which the expansion is obtained. 

Note that only the existence of a relation in the form of equation G-l 

is assumed. Any knowledge of the kernels, or an intention to identify them, 

is not assumed. This encompasses a broad class of systems. Continuous 

nonlinearities and time variations are permitted without the assumption of 

any particular order for the differential equations or of any knowledge con- 

cerning either the speed of variation or the existence of nonlinearity. 

Discontinuous nonlinearities, such as relays in the plant, are about the 

only features excluded. Of course, if there are any relays in a control 

system, they are not likely to be in the plant. Discontinuous time vari- 

ations are permissible if their occurrences can be easily recognized as, 
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for instance, in the staging of a missile. Extensions to more than one 

output or control variable are direct. 

REPRESENTATION 02 T_HE RESPONSE-OF THE PLANT AND ITS SENSITIVITY TO CONTROL _- 
ACTION 

The specific control variable functions considered in this study are 

piecewise constant. 

u(t) = “k kT<t< (k+l)T and I I Uk ,<U (G-2) 

This form of control variable is almost inherent in any control which relies 
on the on-line digital computer. 

The present time will be t=nT; an nT second length section of the 

latest signals x(t) and u(t) will be kept in the computer memory. Then, 

for t >_ 0, with a functional power series of the type of equation G-l for 

the interval 0 ,< tc nT and substituting equation G-2, the following 

equation results: 

J n-l n-l 
x(t) = y(t) + c c ' ' .xAkl...kj@) y"1. . ' . Ukj (G-3) 

j=l kl=O kj=" 

where by equations G-l, 2, 3 ( G-4) 

0 

K K 

t<XT 

Akl..*k ct) = 
j 

i 

Js 
. . . hj(t,Tl, . . . , T.) d71 . . . dT. 

klT kjT 
J 3 

XT<t<(X+l)T 

':~-'--'k~Thj(t,rl, . . . , rj) drl .e. drj 

j (X+l)T<t 
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with X = max k { 1, k2, * 0 '3 kjI 

and K = I (ki+l)T for ki<X 

t for ki = X 

Equation G-3 can be rearranged as shown following: 

x(t) = y(t) +z f: akr(t) Ukr (G-5) 

k=O r=l 

where usually R=J, a&t) stands for ak k, wZth k having been repeated . . . . 
r times. 

From equations G-3 and G-4, with the symmetry of the kernels having 

been considered: 

k 

akr (t) = Akr(t) + 
c 

(r+l) Akr 1c-i ct) '+-i (G-6) , 
i=l 

= 2-a 

+kc 

ii 
2 

i=l j=l 
kr,k-i,k-j 

(t> u k-i uk-j + em' 

where 6.. 
=J 

is the Kronecker delta and, with reference to equation G-4, 

%f , k-i, k-j stand for A k k(k-i) (k-j) with k repeated r times. . . . 
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More generally, 

a (t) = 1 kr Ukr 1 c *<k>m<k>iJ<k> 
<k> 

(G-7) 

R-l 
m<k>= . . R 

r2=0 r =0 3 rR=O II ri! 
i=l 

where, with reference to equation G-4, *<k>=%crl (k-1)*2. . . (,4++) 
denotes one of the Ak .k (t) with k repeated r 1 times; (k-l) r2 times, 

etc. (Note that rl=rlkhenjequation G-5 is used); mCk> is the multiplicity 

of occurrence of the term A 
<k> ' 

as defined by equation G-7; 
% < 

denotes 

summation over all the different A 
<k> 

which have significant contributicns; 

and 

u rl 
<k>= Uk 

'2 Uk-l * - - rR Uk-R (~-8 > 

Defining vectors 

x = p I y. = ,W 3 r =u % k 
3 

(G-9 > 
NXl NXl RX1 

hk = a r(i)(t> i = 0, 1, . . . , n-l 

k 1 RXR r = 1, 2, . . . , R 
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where 2 can be a state vector, if N is the order of the system; then, 
from equation G-5 

n 
?Jt> = ye> + 

c i&(t) I$ t>o (G-10) 

k=O 

Such a representation is possible for the class of plants considered be- 

cause, for this class, functions y(t) and A <k>(t) will be continuous and 
repeatedly differentiable with respect to t, where <k> indicates any of 

the ordered sets of subscripts used in equation G-6. The possible ex- 
ception is at t = iT, with i an integer. Here, higher derivatives of 

A<k> 
(t) will be discontinuous. Then, truncated Taylor series representa- 

tions can be found for y(t) and A <k>ct) 9 respectively. 

P 
,(i) (t> = yp (p"i), tpoi 

c 
p=i 

( 0 

Abci) (t) = , ’ 
c 

A r <k>p- (p"l,, (t-kT)P-i . 
p=i 

P 

c 

1 
A. <K>p+ (p-i) ! (t-kT)P-i 

p=i 

t <'.T (G-12j 

kT_< t <(i:tl)T 

(k+l)T< t 

Finally, for a continuously, if arbitrarily, time-varying plant 

S 
A 
<k>p+ = A<n-h>pi = c 

A <n>p S+ (-hT)' 

(G-11) 

(G-13) 

s=o 
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p 

provided that 

<k-h> = <kl-h, k2-h, . , . ,kj-h> 

if <k> = <kl, k2, . . . ,kj> and ki-h 2 0 

Probably, S=l is sufficient for most plants. 

Equation G-10 can be rewritten for t>nT as 

where 

n-l 

x,(t) = y(t) + c !kct) Sk 
k=O 

(G-13A) 

(G-14) 

(G-15) 

represents the current response of the system at t>nT, resulting from its 

initial state at t=O (the term y(t)) and the uk, k=O, 1, . . ., n-l control 

steps applied during O<t<nT. 

The last term in equation G-15 identifies the effect of the control 

variable u n, which will be applied nTIt<(n+l)T; h is then the current 

sensitivity of the system to this force. -- Of course, & is a column of 
polynomials in un. Note that, in spite of its form, equation G-14 does not 
represent superposition since the sensitivity h(t) is not a unique constant 

of the plant, but a function of past states, y(t), and of past control forces, 
I+, applied to the plant. Equations G-14 and G-15 represent a kind of 
"canonical equations" which describe the current expected behavior of the 
plant which may be linear or nonlinear, stationary of time varying. These 
canonical or standard equations define the current behavior of the general 

I - 
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class of plants when controlled digitally with a zero order hold. The co- 

efficients of these canonical equations can be computed if the plant is 

known, or they can be determined from the signals of the irrnnediate past, 

as has been proposed here. 

Both current response s(t) and current sensitivity s(t) are fully 

determined by equations G-6-15 when the present parameters A 
<n>ps+ 

and 

yp are identified. This represents identification of the current response 

and sensitivity to the next input step, but it does not, however, identify 

the plant in the normal sense. 

A plant is identified when a relationship (differential equation, 

transfer function, Volterra series, etc.) is established (references 4, 5, 

6) which permits computation of the plant output for an arbitrary input 

and an arbitrary initial state. What is identified in this study permits 

only a prediction of the response for the existing conditions of state and 

control forces applied in the past and under the influence of the control 

step ahead which is of a strongly limited nature. In this sense, it is not 

plant identification but identification of current response and current 

sensitivity to control force. 

DETERMINING THE COEFFICIENTS 

From equations G-11 and 

form 

P 

x(t) = 
c &ke te 

G-12, equation G-10 can be rewritten in the 

kT<t< (k+l)T (G-16) 

e=O 

This is simply a Taylor series expansion about some convenient point 

(ideally P=oo) of the output and its derivatives. The coefficients gke 

are, by equations G-11-13, linear combinations of the A 
<n>Ps+ 

and the y 
P 

coefficients. A different combination will arise for every ynterval, unless 

“k=ui for all k and i. Consequently, there will be a separate series of 

274 



the form of G-16 for every interval T. 

If it is assumed that the signal x(t) can be measured exactly, then a 
definite set of ske can be established for each interval kTst<(k+l)T. When 
these are equated to the expressions for ske obtained from equations G-6-13, 

a set of simultaneous linear equations results which uniquely determines the 

A<n>ps+ and 'p coefficients, provided that the number of coefficients and 

intervals is properly coordinated. 

Specifically, for the first term in &ke 

gke = 'e +kt(l) cm<n> l 

(G-17) 

s=o p=o a7 
n 

ci 
U <n-h> A<n>ps+ (-hT)' [-(n-h)T ] p-e 

h=n-k+l 

+u <i~>~<n>ps- [-(n-k)T ] ' (-kT)P'e 
I 

k = 0,1,2, . . . ,n 

e = 0,1,2, . . . ,P 

where notations 
F n> m<n> and '<n-h> were defined in conjunction with 

equations G-7 and G-8, and <n-h> is defined in equation G-13A. 

This will yield a sufficient number of equations if 

n = 2p(S+l) + 1 (G-18) 
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where p is the number of the <n> sets considered significant and the de- 

termination of which is desired. 

Equations G-17 will be independent if all the uk are not identical as 

they would be, for instance, when the limit U of uk is requested continually 

When this situation arises, it still would be possible to determine combi- 

nation coefficients (g ke=ge) which will predict the response as long as 

lu,l=U is maintained. However, any evaluation of the sensitivity to the 

choice of u k would be lost. Basically, a different control policy from the 

one considered in this study is necessary when the available control force 

is so limited that lu k 1 = U is used most of the time. Although assumption 

of an exact noise free measurement of x(t) is unrealistic, it is no less 

realistic than the assumption of a perfectly identified plant and a per- 

fectly identified state vector, which are the bases of the major part of 

the extensive optimal control literature. In both cases, these idealized 

assumptions have value because of their establishing idealized reference 

points. 

G-.2 SOMF, SIMPLIFICATIONS 

In the broad class of systems considered, the higher order terms in 

the working equations become progressively smaller as T is reduced so that 

eventually only the first order terms are significant. It appears that the 

practical cases would tend to be limited to R=l and R=2 where R is the upper 

limit of the summation in equation G-5 and is usually equal to J, the order 

of the truncated Volterra series. Beyond R=2, the number of terms begins 

to poliferate prohibitively. 

A mdimentary form of the R=l case was presented in Section 2 of the 

text where a truncated Taylor series was used as an estimate of the state 

transition matrix. A more formalistic R=l procedure is among those dis- 

cussed in Section 6 under recommendations for further study. 

The R=2 case was investigated in some detail by considering specific 

cases which are outlined in the sequel. In this way, the characteristics 

of the R=2 case are accessed in terms of the degree of complexity of the 

276 



equations and the amount of computation involved. In order to make the 

R=2 case more tractable to implementation, some practical limits must be 

imposed. These limits take the form of specific values for the number of 

p sets considered significant, the point at which the Taylor series for 

y(t) and the A <k>(t) are truncated, and the upper limit, S, of the series 

expansions of the Taylor series coefficients y 

time variation of the plant. 
P 

and A<k>p5which account for 

It should be sufficient to consider only a few intervals, I, of the 

immediate past as the contribution of prior intervals will become increasing- 
ly negligible. In this way, the number of cc sets is limited. Assuming the 

Taylor series for y(t) and A <k>(t) are utilized only in the immediate 

vicinity of the expansion point (the decision interval, T, is reasonably 

short), truncation after a few terms should be feasible. Finally, a linear 

approximation to the time variation of the plant should be sufficient in 
most cases (S=l) and in many instances S=O may give sufficient accuracy if 

the plant is relatively slowly time varying. 

The definition of a particular R=2 case, therefore, takes the form of 

specifying 

1. I - the number of past intervals which contribute significantly 
to the present response. 

2. P- the point at which the Taylor series for y(t) and A <k>(t) 
are truncated. 

3. S - the degree of the polynomial fit accounting for plant time 
variation. 

EXAMPLE CASE ONE 

In this case, the R=2 working equations are developed with the fol- 

lowing assumptions 
1. I=1 
2. P=2 
3. s=o 
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Under the above assumptions, equation G-17 reduces to 

gke = Ye +k p, or m<k,l> ‘<k-l> A<k-l>p+ [-(k-l)T1 p-e (G-19). 
p=o 

+ m<k> ‘<k> A<k>p- (-kT) p-e 1 

where from equation G-6 or G-7 the significant p sets is 3. The number of 
past intervals of data which are necessary to determine the coefficients 

is given by equation G-18 to be 7. 

The coefficients for which values are needed during the interval 
nT,<t <(n+l)T are 

A 
np- 

A nnp- 

A n(n-l)p- 

A 
npt 

A nnp+ 

A n(n-l)p+ 

yP 

p = 0, 1, 2 (G-20) 

which gives a total of 21 unknowns. A set of 21 equations of the form G-19 
must be formulated in order to evaluate these coefficients. To obtain the 
21 equations, the ske coefficients are measured in the form of equation G-16 

278 



where the expansion point is assumed to be absorbed in the coefficient. 
These measurements are made during seven intervals of the immediate past 

and the equations will be formed by equating the measured gke coefficients 

to the unknown coefficients through equation G-19. 

In this example, these equations for the interval kTSt<(k+l)T takes 
the form shown in equations G-21-23 where, for the sake of notational 

brevity, q = k-l. 

(G-21) 

=y,+A 2 
gko q(o+) uq + Aqq(o+) uq + 2 Aq(q-l)(o+) uq uq-l 

2 
q(l+) uq + Aqq(l+) uq + 2 Aq(q-l)(l+) uq Uq-1 > (-qT) 

2 
q(2+) uq + Aqq(2+) uq + 2 Aq(q-l)(2+) Uq Uq-l (-SO2 

+ 
Ak(O-) Uk + Akk(O-) Uk 2+2A 

kq(O-) "k uq 

+ Ak(l-) Uk + Akk(l-) "k2 +2A kq(l-) Uk uq > 
C-W 

i- 
{ 

2 
Ak(2-) Uk + Akk(2-) Uk + 2 Akq(2-) "k uq > 

(-kT)2 
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(G-22) 

=yl+A 
2 

gkl qU+) + Asqw uP 
+2A q(q-l)W) uq uq-l 

+2 A 
1 

+A 2 
qU+) % 44(2+Yk + 2 A q(q-1)(2-t) u4 uq-l > 

(-@I 

+ Ak(l-) "k 
2 

+ Akk(l-) Uk + 2 Akq(l-) Uk uq 

2 
+2 Ak(2-) Uk + Akk(2-)"k + 2 Akq(2-) Uk uq 

(G-23) 

'k2 =y2+A 
qU+) '-c 

+A 2 
qqU+) uq + 2 A q(q-1)(2+) uq uq-l 

2 
+ Ak(2-) Uk + Akk(2-) Uk + 2 Akq(2-) Uk uq 

A total of 21 equations is obtained if k assumes seven values cor- 

responding to seven intervals of the immediate past. The corresponding 

coefficients of the different intervals may be set equal to each 

t%?and to A 
<n>p+_ 

which gives a total of 21 equations and 21 unknowns 

In matric form the set of 21 equations can be expressed compactly as 

Ma=& -- (G-24) 

where 

” = 11 gk 0 gk 1 gk 1 2 ’ * ’ 1 gk 7 0 gk 7 1 gk 7 2 (G-25) 
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and 

The matrix g is a 21 x 21 square matrix consisting of the known constants 

and control forces of equations G-21-23. It is possible to partition ,M in 

such a way that inversion of the full matrix is not required. Instead, a 

partial solution is obtained from the equation obtained from the partitioned 

M. -. 

Ba,=g (G-27) -- 

where 

$‘= 
'k12 'k22 'k32 * * ' gk72 (~-28) 

and 
(G-29) 

1 - 
51 - 1 '2 An(2+) Ann(2+) An(n-l)(2+) An(2-) Ann(2-) An(n-1)(2-) 

By inverting the 7 x 7 matrix 2, a solution is obtained for the unknowns 
contained in 2 -1' 

$1 - = A-1 g (G-30) 

Having found values for seven of the unknowns, a solution for another seven 

is obtained in the form 

s2 = p g1 (G-31) 

where 2 is the same matrix as in equation G-30 and 

. (G-32) 
12' = 1'1 An(l+) Ann(l+) An(n-l)(l+) An(l-) Ann(l-) An(n-l)(l-)] 
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81 is a function of the gkil and the quantities contained in2 -1' 

Similarly, a solution is obtained for the remaining seven unknowns 

t -3 = 8-l 82 (G-33) 

where 2 is again the same matrix as in equation G-30 and 

(G-34) 
14 I= 
e3 1'0 An(O+) Ann(O+) An(n-l)(O+) An(O-) Ann(O-) An(n-l)(O-) 

a2 is a function of the gk o and the previously determined unknowns in 
A and 2 i 
21 -2’ 

The specific form of g in this example case is 

g= 

I  

1 

1 

1 

1 

1 

1 

1 

m 

where it can be seen 

The solution for the 

2 
Ukl-l 

2 

Ukl 

2 

Uk2 

2 

Uk3 

2 

Uk4 
2 

Uk5 

2 

Uk6 

that 'g is a function of the past control 

(2ukl-1 Ukl-2) 

(2uk u 1 kl-1) 

(2Uk u 
2 kl 

) 

(2uk 
3 Uk2) 

(2uk4 uk3) 

(2Uk u 
5 k4 

1 

(2Uk u 
6 k5 

) 

2 

Ukl 

2 
Yc2 

2 

Uk3 

Uk4 
2 

2 

Uk5 

2 

Uk6 

2 
Uk7 

(G-35) 

(2Uk u 1 kl-1) 

(2Uk u > 
2 3 

(2Uk u 
3 k2 

> 

(2Uk 'Jk > 
4 3 

(2uk Uk ) 
5 4 

(2Uk u 1 
6 k5 

(2Uk u 
7 k6 

) 

forces only. 

21 unknowns involves the inversion of this 7 x 7 matrix 
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and three matrix multiplications which is simpler than inverting the full 

21 x 21 matrix of equation G-24. 

Assuming a second order system, the output state is given by 

2 
x(t) = 

c g te ne 
e=O 

2 
2(t) = c 

e-l 
e gne t 

e=O 

nTLt<(n+l)T (~-36) 

where the g ne coefficients are obtained by substituting the solution values 

Of the A<n>p+_ coefficients and the control forces u n' Un-l and u n-2 into 

equations G-21 through G-23. 

The vector x(t) can be represented during the interval nTst<(n+l)T by 

an equation of the form 

(G-37) 

where equation G-37 follows from G-36 with the proper division of the terms 

into those which contain u 
2 

n, those that contain un2 and those which contain 

neither u or u n n' 

Equation G-37 is of a form suitable for application of the control 

policy as presented in Sec,tion 4.1 of the text. The matrix 2 of equations 

G-30, 31, 33 must be 'updated' every interval by shifting the most recent 
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control force functions into the last row (equation ti-35) and shifting the 

remaining rows up one thereby shifting the row containing the functions of 

the 'oldest' control forces out of the matrix. New A<k>p& coefficients are 

therefore determined every interval. 

EXAMPLE CASE TWO 

In this case, the degree of the Taylor series expansions of the A <k>(t) 
terms is raised by one. 

1. I=1 

2. P=3 

3. s=o 

Under the above assumptions, equation G-17 reduces to 

3 

gke = Ye + P 
=o( 

e m<k-l>"<k-l>A<k-l>p+ [-(k-l)T]p-e 
p=o (~-38) 

+ "ad-&k> A<tip- (-kT)P-e 

where from equation G-6 or G-7 the significant p sets is again 3. The 

number of past intervals of data which are necessary to determine the 

coefficients is given by equation G-18 to be 7. 

The unknown coefficients to be determined are 

A 
ne+ 

A 
A ne- 

nnp+ 
A 

A 
nnp- 

n(n-l)p+ 
A n(n- 

yP 
l)P- 

p = 0, 1, 2, 3 (G-39) 
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where in this case the number of unknowns is 28. The solution proceeds in 
a manner identical with that of the first example case except for the in- 

clusion of the additional terms corresponding to p=3. The matrix 5 is again 
7 x 7 and the solution for the 28 unknowns requires four matrix multiplications 

of the form of equations G-30, 31, 33. 

EXAMPLE CASE THREE 

In this case, a time varying plant is assumed. 
1. I=1 
2. P=2 
3. S=l 

,LJnder the above assumptions, equation G-17 reduces to 

(G-40) 

gl;e m<k-l> '<k-l> A~-l>ps+ [ -(n-k+l)T] ’ [-(k-1)T) p-e 

+m Lk> '<k> A<k> [-(n-k)T] ' (-kT)P'e 
> 

where from equation G-6 or G-7 the significant p sets is again 3. The 

number of past intervals of data which are necessary to determine the 

coefficients is given by equation G-18 to be 13. 

The unknown coefficients to be determined are 

A nps+ 

A nnps+ 

A n(n-l)ps+ 

yP 

\ 

A nps- 

A nnps- 8 

A n(n-l)ps- 

) 

p = 0, 1, 2 

s=O,l 

(G-41) 
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where in this case the number of unknowns is 39. The solution proceeds in 

a manner very similar to that of example case one except that there are now 

two A<k>p terms on the right hand sides of the equations equivalent to 

G-21-23 due to the fact that s takes on values of 0 and 1 whereas before 

only those terms corresponding to s=O were considered. The matrix a in 

this case will be 13 x 13 due to the fact that for a given value of p 

there are now 13 unknowns as opposed to only seven given in example case one. 

Once fi is inverted, it can be used repeatedly in the three matrix multipli- 

cations needed to solve for the 39 unknowns. The procedure for placing the 

equations in the proper form is identical to that of example one where an 

equation of the form of G-37 is obtained. 

G.3 CONCLUSIONS 

The R=2 Volterra series method of estimation of the current plant 

response and current sensitivity involves quite a few unknowns. The matrix 

which must be inverted to solve for these unknowns is not equal to the 

number of unknowns, fortunately, as inverting a 39 x 39 matrix could not 

be considered practical. The matrix which is inverted is a function of the 

control forces which can in most cases be known with greater accuracy than 

the state variables which make up the inverted matrix in the interpolation 

procedure. 

A summary of some important equations is given below. 

1. The number of intervals of data required to identify the coef- 

ficients 

n = 2p (S+l) + 1 (G-42) 

2. The number of unknowns 

unknowns = (P -F 1) 12~ (S+l) + 1) (G-43) 
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3. The size of the matrix which must be inverted to identify the 
unknown coefficients 

size = 2~ (S+l) + 1 (G-44) 

4. The number of matric multiplications which must be performed to 

identify the unknown coefficients 

multiplications = P + 1 (G-45) 

Note that equations G-42 and G-44 are identical and that the size of 

the matrix which must be inverted is independent of the order of the Taylor 

series for the ACk>(t) terms. The number of Taylor coefficients reflects 
in the number of matrix multiplications which must be made which is a much 

easier operation than matric inversion. 
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APPENDIX H 

PSEUDOINVERSE OF A RECTANGULAR MATRIX 

The concept of the pseudoinverse of a rectangular matrix is apparently 

first due to Moore, and was later rediscovered by Penrose with extension by 

Greville. (References 1,2; and 3). 

The basics of Penrose's development with respect to the present problem 

are as follows: 

Consider the representation of a real linear equation set by the conformable 

matrix equation: 

Ax=b -- - (H-1) 

where A is a known generally rectangular matrix of dimension (mxn), b is a 
known (mxl) vector and x_ is an unknown (nxl) vector. 

The equation set H-l can conventionally be described as: . 

Underspecified if m-c n 
Fully specified m=n 

Overspecified m >n 

+ 
Then a non-unique generalized inverse of A designated A is defined by the 

condition: 

AA+A=A -- - 
(H-2) 

If A+ is further constrained by: 

A" A A+ -- = A+ (H-3) 
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( A A+)' = A A+ -- -- (H-4) 

(H-5) 

Penrose has shown that the generalized inverse satisfying all these con- 

ditions is unique and termed it the pseudoinverse A'. 

In the familiar fully specified case where A is square, if it also is 

nonsingular 

A+ = 4 -1 
(H-6) 

where A -1 is the conventionally defined inverse of A. Thus the successive 

solution of an underspecified growing set of linear equations in a manner 

to be described converges on the exact solution as it reaches full specifi- 

cation. 

H-1 BEST APPROXIMATION PROPERTY OF PSEUDOINVERSE SOLUTION 

The particular utility of the pseudoinverse to the present problem is 

based on its ability to yield a best approximate solution for 2 according to 

the following definition: 

Definition - 2 is defined as the best approximate solution of of in the 

sense that: 
either, 

(A'?- -- b)'(A~--b)<(Ax-b)'(Ax-b) -0 for all 2 # z 

(H-7) 

or 

(AT- -- h)'(A?--) -- =(Ax-b)'(Ax-&) -- -- and ??I? < XIX -- -- 
(H-8) 
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The inequality of the first stated best approximation criterion will be 
recognized as a form of the "least squares" fitting criterion, and will sub- 

sequently be so identified in the overspecified case. The inequality of 
the second stated criterion is simply the condition that the solution g 
have-minimum Euclidean norm (which also implies minimum energy in physical 

phase spaces). Note that the equality of the second stated criterion can 
generally be satisfied only by underspecified equation sets. 

Theorem - The following theorem due to Penrose asserts: 

z= ATb is the unique best approximate solution of the equation set A x = b -- _- 

The utility of the pseudoinverse matrix having been thus established, 

it remains to find forms for its calculation. Two special cases follow. 

PSEUDOINVERSE MATRM OF AN UNDERSPECIFIED EQUATION SET 

The pseudoinverse matrix for the underspecified case can be formalisti- 
tally exhibited as follows: 

Consider the set of m linear equations representing the underspecified case 

m<n 

Introduce a reduced set of variables y defined by: 

Premultiply by 4 and form the solution for y by inversion. 

AA'l=k -- 

(H-9) 

(H-10) 

(H-11) 

(H-12) 
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Back substitute the formal solution for y and identify the resultant product 

as the right pseudoinverse A+. 

z=A' (AA+b=A+b -- 

A’ = A' (A A')-1 -- 

(H-13) 

(H-14) 

which is the desired pseudoinverse in the underspecified case, This de- 

velopment presupposes that 4 is of maximal rank, so that the rows of & are 

linearly independent, and (A A') is nonsingular. -- It can be shown to satisfy 
the second stated best approximation criterion: 

(AZ- -- b)' (AZ-k)= -- (AX-id)’ -- (Ax-b) -- 

and II~II='?Z<X'X = ~lxll -- -- - 
(H-15) 

This underspecified case is that applicable to the startup problem, and is 

seen to satisfy the condition of a minimum norm of the solution 'jY. 

It should be recognized that the preceding development is formal only, 

and does not constitute a proof Particularly the conditions for existance 

and uniqueness of the indicated forms are to be found in the references. 

PSEUDOINVERSE MATRM ,OF AN OVERSPECIFIED EQUATION SET 

The corresponding form of the pseudoinverse matrix for the overspecified 

case can be displayed even more directly as follows. 

Consider the set of m linear equations representing the overspecified 

case 

m>n (H-16) 

Note that A is of maximal rank n. 
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Left multiply by the transpose of 4 = A' and effect a formal solution by 
inversion of the resultant product matrix. 

A' A x = A' b -- 

( A' A )-1 ( A' A ) z - . 

Here the left pseudoinverse 

= I z = g = ( 11' A )-1 A' b = A" b -- 

is identified with the matric product 

(H-17) 

(~-18) 

(H-19) 

Again the preceding development is formalistic, and presupposes that 4 is 
of maximal rank so that the product (A'A) is positive definite and therefore -- 
nonsingular. 

This "overspecified" case is not per se pertinent to the "startup 
problem". It is presented here however for completeness, and because it 

may ultimately be found useful in an updating procedure. The formal simi- 
larity of the "overspecified" to the "underspecified" case is striking, and 
suggests a closer parallism of these extremum cases than is superficially 

apparent. 

H.2 TWO RECURSIVE ALGORITHMS FOR THE PSEUDOINVERSE 

In principle equation H-14 is directly applicable at each stage of the 

startup process. However its direct utilization requires the inversion of 
the square matrix <AA'), which grows in rank at each successive step. The 
fact that the matrix A grows only by a single row at each step of the start- 

up process with all previously determined elements unchanged suggests that 

a recursive algorithm avoiding full rank inversion at each step may be 

found. 

WELLS' RECURSIVE ALGORITHM (Reference 4) - Wells' discovered one such 

algorithm as follows: 
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Given a matrix ik extant at the k'th step of the starting procedure, at the 

next step the matrix A++l is of the form: 

I (H-20) 

where a -k' denotes the added row. 

Remembering that the pseudoinverse is conformable, a corresponding form of 

the pseudoinverse is: 

%+l+= [%I i k] (H-21) 

where gk denotes an added column. 

By introduction of some additional transformitions, Wells was able to 

identify the foregoing process of row augmentation of the direct matrix with 

general columnar augmentation as previously analyzed by Greville. Wells ob- 

tained pertinent results both in the case where the direct matrix was station- 

ary in rank and where it grows in rank under the row augmentation. 

Only the latter case is pertinent to the startup procedure, and for it 

Wells result is: 

+ 
%c+1 = 

+ 
Ak 

where: 

(H-22) 

(H-23) 
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- 

and: 

s,=r - &+ A+ (H-24) 

Note that the only matrix inversion required at each step by Wells recur- 
sive algorithm is the trivial inversion of a scalar. 

ANOTHER RECURSIVE ALGORITHM - In the course of preparing this report another 

recursive algorithm for the running computation of the pseudoinverse was 

developed based on the application of matrix inversion by bordering. The 

development is as follows: 

From the definition of the pseudoinverse matrix for the underspecified case, 

at the k'th step of startup it is given by: 

A++ = A.+’ ( A+ A+’ )-l= &’ 

where: gk = $ i!k' 

At the succeeding step it is given by: 

% 
-1 

(H-25) 

(~-26) 
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where: 

(H-27) 

Note that under this partioning elk is a row vector, z.'~ is a column vector, 

and fk is a scalar. 

But the required inverse is readily recognized as that of a bordered matrix, 

with a well known solution which becomes in the present symbology: 

(Reference 5) 

where: -1 akyfk-e+';k d+ (H-29) 

Since by supposition in a recursive process the only inverse requisite for 

this determination zk -1 has been calculated in the preceding step, this al- 
gorithm permits running calculation of the pseudoinverse, again without 

growing rank inversion. 
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APPENDIX I 

COMPUTATION REQUIREMENTS 

Practical application of the various control methods of this report 

depends directly on the requirements they impose on the on-line digital 

control computer. It is the purpose of this appendix to identify these 

computational requirements. 

The following analysis deals with the 'Interpolation Prediction' 

method of plant representation for several reasons: 

(1) 

(2) 

(3) 

'Interpolation Prediction' has been identified as the preferred 

method of linear stationary plant control, based on generality 

of application. For linear nonstationary plants, its formalism 

is innately suitable. For nonlinear and/or nonstationary plants, 

it is tentatively preferred, partially because of computation 

requirements. 

The computational requirements of the other methods of linear 

stationary plant control have been previously estimated in 

reference 1. 

The 'Interpolation Prediction' method exhibits all of the known 

problems of computer use in at least moderately complex form. 

I.1 METHODS OF ESTIMATING COMPUTER REQUIREMENTS 

A superfically simple way of establishing the computing requirements 

is to print out the elapsed clock times of execution of 'appropriate' 

portions of the IBM 7094 simulation programs. This method has not been 

used for two reasons: 

(1) The complexity of branching and looping operations of the 

simulation programs (which were designed to be highly flexible) 
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makes the 'appropriate portions' difficult to identify. 

(2) The extensive use of 'canned' general subroutines suggested that 

such clock times would be so highly conditioned as to mask the 
desired inherent times of calculation. 

We particularly found this method to be prohibitively difficult and tedious 

to apply to already existant programs. 

The following analyses then were made by estimation directly from 

the control equations, assuming conventional methods of computation. 

SPECIFIC ESTIMATION METHODS 

Execution Time - The following analyses will show that three basic operations 

dominate the use of the 'Interpolation Prediction' method: 
(1) Vector addition 

(2) Matrix multiplication of two types: 

(a) Vector by vector multiplication 

(b) Multiplication of a vector by a conformable square matrix 
(3) Inversion of a nonsingular square matrix. 

The computing time required for operation (1) is simply: 

Tl = qA 

where q is the vector dimension and A is the computer add time including 

operand access. 

Operation (2a) requires an execution time of: 

T2a = q(A + M) 

where M is the computer multiplication time and the composite operation 

requires access to 2q operands. Following reference 2 we shall 

alternately use: 

T2a = 2.75q M 

The leading numeric factor represents an average observed factor 

appropriate to one-to-one combined operations of multiplication and 
addition including access time, arbitrarily increased by 10% to absorb 

trivial operations and bookkeeping. 
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Operation (2b) using the same estimating factor has execution time: 

T2b = 2.75q2 M 

Assuming a fully developed matrix and a minimum operation method such 

as the Gauss-Jordan reduction, reference 2 gives a characteristic time for 

execution of operation (3) of: 

T3 = 2.75q3 M 

If additionally r solutions of the simultaneous set of equations partially 

described by the matrix under inversion is desired, the execution time 

becomes: 

T3 = 2.75 (q3 + rq2)M 

The following time estimates then will be based on identification of 

the aforedescribed operations. 

Instruction Storage Requirements - Subroutine programming of these basic 
operations is assumed with estimated instruction storage requirements as 

given in Table 1.1. 

Operation Instruction Words 

(1) Vector addition 10 

(2a) Vector multiplication 20 

(2b) Vector by matrix 
multiplication 50 

(3) Matrix inversion and/or 
multiple solution 400 (reference 2) 

Table I.1 

STORAGE REQUIREMENTS 

I.2 LINEAR STATIONARY PLANTS 

Running Computation - The final closed form solution for the running value 

of the control force is given in matric form in Section 2.1 Table 2.1 as: 

XI’ K r((k+l)T) - El x(kT-) - b2 1 Uk-l 1 
'k = LI' - -1 I( x 

(I-1) 
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Once the initialization process is complete, the matrices XI, Xi, 

b2I ' XI are fully determined. Further the positive definite weighting 

matrix K is an a priori choice. Thus all of the matric coefficient 
products can be evaluated and stored at the conclusion of initialization. 

Und.er this assumption and appropriate identification of the stored 
coefficient matrices in the running calculation equation I-l takes 

the form: 

Uk -- = a'r((k+l)T) + b'x(kT-) + c uk-1 (I-2) 

where the definitions of the (lxp) coefficient row vectors 2' and b' and 

the scalar c are obvious by comparison with equation I-l, p being the 

plant order. 

The running computation of equation I-2 requires two multiplications 

of p vectors, utilizing (2p + 2) prestored operands. In accordance with 
our general time estimation policy, the running computation time/decision 
interval is: 

T multiply = 5.5 p M 

Using the M = 12 w multiplication time of the Honeywell H-387 airborne 
control computer as typical, results in an estimated computation time/ 

decision interval of 0.33 ms for a fifth order plant. The preceding 
estimate is for computation only, and does not include input-output 
transfer time to the computer. A reasonable estimate of such time for a 

fifth order plant is of the order of 0.07 ms based on the manufacturer's 
(fragmentary) specifications. 

Thus the total computation time/decision interval in the running 
state is: 

T running = 0.4 ms 

The preceding time estimates presume the use of the fixed point 

arithmetic inherent in the machine design. We have successfully implemented 
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DACS control in fixed point computation in previous studies, but cannot 

conscionably recommend it in the high order unknown plant context. 

Typically internal machine conversion to floating point computation slows 

calculation by a factor of approximately ten; and requires storage of 

approximately 200 instruction words for this purpose. 

The calling routine for execution of equation I-2 should require 

approximately 20 instruction words. 

STARTUP AND INITIALIZATION 

The startup process occurs during the first (p + 2) control actions, 

p being the system order. During this startup period, a growing basis of 

vectors representing the results of the control actions are read in and 

stored in the computer memory. It is here assumed that the necessary 

computations with this data, here termed initialization, is deferred until 

the complete set of (p + 2) startup actions is complete. 

This policy has the effect of making the computing requirements during 

startup and running use commensurate. However, a sharply peaked computing 

load occurs between transition. A better approach is exemplified in the 

recursion forms of the pseudo-inverse startup procedure, where the 

initialization calculation builds up concurrently with data availability. 

Recognizing this possibility for amelioration, we proceed to identify the 

requirements separately. 

Start-up Computation - With the single exception that all data read into 

the computer is stored, the startup control computation can proceed quite 

analogously to the process previously described for the running computation 

in 'Interpolation Prediction . 

The time of computation at each startup step should be closely 

approximate to that previously computed for the running computation 

augmented by something like 2p (A + S) where S is the memory write time. 

Again using the example of a fifth order system controlled by the 

Honeywell H-387 computer (p = 5, A = 2 p.s., S = 4 ~.rs), the computation time 
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at a startup step is: 

T startup = 0.46 ms 

inclusing control force calculation, inputting, and data storage. Again 
fixed point computation has been assumed. 

Initialization Computation - At the conclusion of the (p + 2) steps of the 

startup procedure, a square matrix 2 comprising the (p + 2) particulate 

values of the base functional vectors ek recorded in startup is available. 

&',.I = .'(kT) _. I 
u, : uk-l , 

u-3) 

u-4) 

By the existance of the finite difference equation 

~((k+l)T-) = el x(kT-) + q uk + !f2 ukml U-5) 

the recorded values of the state vector 2 in the 2 matrix have a dual 
interpretation as follows. Assume that the recorded values are representative 

of consecutive control actions. Then the 2 vector identified with the left 

hand side of equation I-5 for a given control action is identical to the 2 

vector of the right hand side of the succeeding control action. 

By utilization of this property, it is possible to select from the 
matrix I-3 the 'delayed' set of 2 vectors comprising the p x (p + 2) 

dimension matrix z.* 

z : : I 
, . . . : x((k+l)T-) ; . . . i 2((~+3)T-) 
I I I I 1 (I-6) 

As written equation I-6 assumes that the x'(kT) vectors of equation I-4 
represent the state components existant af- the initiation of the k'th 
control action. Thus all components of X except the last column are 
contained in the 2 matrix. The last co umn is determinate at start-up f 
termination but requires separate storage. 
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With the identification of equations I-3, I-5, and I-6, the set of 

linear equations existant at startup termination has the form: 

(I- 7) 

Where g is a matrix of unknowns of dimension p x (p+2). The solution for 

the elements of 2 amounts to the p fold solution of the linear equation set 

I-7 of common basis 2. 

Invoking the previously cited formula for the execution time of this 

operation, with q = p+2 and r = p: 

T solution = 2.75 (2p3+6p2+12p+8)M 

Again using the 12 ps multiplication time of the Honeywell H-387 and a 

fifth order equation as typical: 

T solution = 15.5 ms 

In principle (p + 2)2 data words are required for storage of the 

direct 2 matrix and p additional words are required for the single 2 

vector not contained in 2. Depending on the convenience of abstracting 

subarrays from 9 , it may be desirable to store the p(p + 2) elements of 

$ separately in spite of their high redundance in 9. 

Further if it is desired to maintain the identity of the direct 

matrix 2 for updating use as many as (p + 2)2 additional data words could 

be required. 

With the basic solution of equation I-7 accomplished, it remains to 

manipulate appropriate subsets of the g matrix into the forms required 

by the running equations I-l and I-2. Using the notation of those 

equations, the matrix g can be partitioned as follows: 

B= 
c 

bl .: b 
I I : -S 1 (I-8) 
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where F --I is a p x p matrix, and bl and b 
-21 

are p x 1 vectors. 
I 

An auxiliary definition based on the developments of Appendix A defines: 

(I-9) 

The p order inversion of equation I-9 by a previously cited estimation 
formu3.a requires an execution time: 

T3 = 2.5 p3 M 

Completing the calculation of XT requires a matrix by vector multiplication 

and a vector addition. Thus the total computation time for &I as a 
function of system order is: 

Ti.I 
= 2.75 (p3 + p2) M + p A 

In the standard fifth order example here being developed this becomes: 

TA = 5 ms 
-1 

An additional data storage requirement of p2 words developes for the 
calculation and storage of FI -1 . Since all operations are repetitions of 
previously estimated subroutines, -20 additional instruction words are 
required. 

The final initialization computation is of the several matric products 
required for the conversion of equation I-l to I-2. First the column 

vector A' K is calculated. 
I-- 

Because X is diagonal the appropriate time is 

that of a vector-vector product. After its calculation, two actual 

vector-vector products, AigX, and 1; K b21 follow. Finally the 

matrix-vector product A; g ET is calculated. Thus the total time of 
execution of these clean-up operations is: 

T products = 2.75 (3p + p2) M 

Which for the example fifth order case yields: 

T products = 1.3 ms 
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A calling routine of 20 instruction words should suffice t,o Control this 

calculation. 

The total time for the complete initialization calculation is obtained 

by summing as follows: 

T initialization =T solution +T +T 
II products 

= 2.75 (3p3+8p2+15p+8)M+pA 

As evaluated for a fifth order plant using Honeywell I-l-387 parameters: 

T initialization = 21.8 ms 

Comparison of this result with the computation time of a startup 

step T startup = 0.46 ms indicates a ratio approaching 5O:l. This indicates 

a consistency of computation load as follows. It is assumed that the 

characteristic time for a startup or running calculation should be a small 

fraction of a decision interval, not more than say one-tenth. The (one 
shot) initialization calculation can thus be inter-meshed with something 

like five additional startup steps, assuming full time computer utilization 

during this time only. 

I.3 COMPUTER ACCURACY 

The accuracy of digital computation is ultimately limited by the 

propagation of roundoff errors into the desired computational result. 

Since such cumulative errors are generally unpredictable, conventional 

practice is to provide internal representation of operands to sufficient 

precision that the most significant digits of the desired result are 

stable against such errors. Thus accuracy of computation is reflected 

into computer requirements directly as the computer data word length. 

The identification of the requisite control computer accuracy was not a 

formal objective of the current study. However the following indirect 

conclusions can be inferred: 

(1) Since the sole computational output is the value of a command 

control force which can be practically implemented to an 
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accuracy - O.l%, a valid 10 bit output word is adequate. This 
conclusion was verified in our previous hybrid simulations. 

(2) Similarly available input sensors are typically of the same 

order of absolute accuracy. Ten bit input quantization was 
used in our previous hybrid simulations, with good correlation 

to digitally computed results of considerably higher precision. 

(3) The most extensive and critical computation process involved 
in this method is matrix inversion. With a 36 tit word length 
our IBM 7094 simulations have routinely shown errors smaller 

than 10 -6 in all elements of the approximate identity matrix 

formed by multiplication of the direct matrix by its calculated 
inverse. Inadequate control was observed, when by ill 

conditioning, these errors exceeded 10 -3 . Assuming similar 
behavior for errors induced by less precise data representation, 

a minimum control computer word length of 26 bits is implied. 

I.4 AVAILABLE SMALL AIRBORNE COMPUTERS 
Preceding portions of this appendix have been based on the 

characteristics of the Honeywell H-387 airborne control computer. Unique 
suitability to the present problem is not implied. Rather it was chosen 
as a study vehicle by the following considerations. 

A recent Emerson contractual study (reference 3) compared the 
characteristics of the following MIL E-5400 Class I airborne computers: 

GE A-212; Honeywell H-387; Kearfott L90-1; Litton L304, L305, L306; 

Univac 1824; AC Sparkplug Magic III N; CDC MICC 

The here pertinent requirements of the reference study were: 

(1) A maximum basic cycle time (instruction and operation) not 
greater than 8 p.s. 

(2) In addition to standard operation codes, the computer should 

have a "Wait for Interrupt" instruction; and the instruction 
word should have the possibility of including an "inhibit" bit 

which would prevent the computer from servicing an interrupt 

307 



if the computer were performing high priority operations. 

(3) Associated with the "Load Output Register" instruction and 

"Read Input Register" instruction there should be a capability 

of selecting registers external to the computer by appropriate 

strobe pulses. 

(4) The computer memory size should be expandable to at least 

16K 12-bit words. 

(5) The computer weight must be less than 50 (fifty) pounds. The 

size should be less than 0.75 cubic feet. 

(6) The computer must satisfy MIL E-5400 Class I. 

(7) A 24-bit minimum precision of the data word is required, and 

greater precision to a maximum of 36-bits is desirable. 

Several other requirements, peculiar to the reference study application 

but not germane to DACS usage, were included in the original specification. 

However it was found that their relinquishment does not add to the 

forestated set of computers satisfying requirements (1) through (7). 

All of the listed machines satisfy the stated requirements with 

occasional minor deviations. The previous analyses have shown that two 

properties are particularly important to the DACS application: 

(1) Data word length 

(2) Multiplication execution time 

Available data indicated that, while these characteristics were 

not necessarily reciprocally correlated, neither did a uniquely preferable 

combination exist. The Honeywell H-387 was somewhat arbitrarily chosen 

as satisfactory in the second property, but marginal in the first. 
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